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4.3 Plane Axisymmetric Problems 
 
In this section are considered plane axisymmetric problems.  These are problems in 
which both the geometry and loading are axisymmetric. 
 
 
4.3.1 Plane Axisymmetric Problems 
 
Some three dimensional (not necessarily plane) examples of axisymmetric problems 
would be the thick-walled (hollow) cylinder under internal pressure, a disk rotating about 
its axis1, and the two examples shown in Fig. 4.3.1; the first is a complex component 
loaded in a complex way, but exhibits axisymmetry in both geometry and loading;  the 
second is a sphere loaded by concentrated forces along a diameter. 
 

 
 

Figure 4.3.1: axisymmetric problems 
 
A two-dimensional (plane) example would be one plane of the thick-walled cylinder 
under internal pressure, illustrated in Fig. 4.3.22. 
 

 
 

Figure 4.3.2: a cross section of an internally pressurised cylinder 
 
It should be noted that many problems involve axisymmetric geometries but non-
axisymmetric loadings, and vice versa.  These problems are not axisymmetric.  An 
example is shown in Fig. 4.3.3 (the problem involves a plane axisymmetric geometry). 
 

                                                 
1 the rotation induces a stress in the disk 
2 the rest of the cylinder is coming out of, and into, the page 
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Figure 4.3.3: An axially symmetric geometry but with a non-axisymmetric loading 
 
The important characteristic of these axisymmetric problems is that all quantities, be they 
stress, displacement, strain, or anything else associated with the problem, must be 
independent of the circumferential variable  .  As a consequence, any term in the 
differential equations of §4.2 involving the derivatives 22 /,/   , etc. can be 
immediately set to zero. 
 
 
4.3.2 Governing Equations for Plane Axisymmetric Problems 
 
The two-dimensional strain-displacement relations are given by Eqns. 4.2.4 and these 
simplify in the axisymmetric case to 
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Here, it will be assumed that the displacement 0u .  Cases where 0u  but where the 

stresses and strains are still independent of   are termed quasi-axisymmetric problems; 
these will be examined in a later section.  Then 4.3.1 reduces to 
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It follows from Hooke’s law that 0 r .  The non-zero stresses are illustrated in Fig. 

4.3.4. 
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Figure 4.3.4: stress components in plane axisymmetric problems 
 
 
4.3.3 Plane Stress and Plane Strain 
 
Two cases arise with plane axisymmetric problems: in the plane stress problem, the 
feature is very thin and unloaded on its larger free-surfaces, for example a thin disk under 
external pressure, as shown in Fig. 4.3.5.  Only two stress components remain, and 
Hooke’s law 4.2.5a reads 
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with   0, 


   zzrrrzz E
 and 0zz . 

 

 
 

Figure 4.3.5: plane stress axisymmetric problem 
 
In the plane strain case, the strains  zzz ,  and zr  are zero.  This will occur, for 

example, in a hollow cylinder under internal pressure, with the ends fixed between 
immovable platens, Fig. 4.3.6. 
 

 
 

Figure 4.3.6: plane strain axisymmetric problem 
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Hooke’s law 4.2.5b reads 
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  (4.3.4) 

 
with    rrzz . 

 
Shown in Fig. 4.3.7 are the stresses acting in the axisymmetric plane body (with zz  zero 
in the plane stress case). 
 

 
 

Figure 4.3.7: stress components in plane axisymmetric problems 
 
 
4.3.4 Solution of Plane Axisymmetric Problems 
 
The equations governing the plane axisymmetric problem are the equations of 
equilibrium 4.2.3 which reduce to the single equation 
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the strain-displacement relations 4.3.2 and the stress-strain law 4.3.3-4. 
 
Taking the plane stress case, substituting 4.3.2 into the second of 4.3.3 and then 
substituting the result into 4.3.5 leads to (with a similar result for plane strain) 
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This is Navier’s equation for plane axisymmetry.  It is an “Euler-type” ordinary 
differential equation which can be solved exactly to get (see Appendix to this section, 
§4.3.8) 
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With the displacement known, the stresses and strains can be evaluated, and the full 
solution is 
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For problems involving stress boundary conditions, it is best to have simpler expressions 
for the stress so, introducing new constants   1/2ECA  and   12/1ECC , the 
solution can be re-written as 
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Plane stress axisymmetric solution 
 
Similarly, the plane strain solution turns out to be again 4.3.8a-b only the stresses are now 
{▲Problem 1} 
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Then, with   1/2ECA  and    2112/1  ECC , the solution can be written 
as 
 

   

  



 








 






 






Cr
r

A
E

u

C
r

A
E

C
r

A
E

CC
r

AC
r

A

rr

zzrr











212
11

212
11

,212
11

4,2
1

,2
1

22

22

  (4.3.11) 

Plane strain axisymmetric solution 
 
The solutions 4.3.9, 4.3.11 involve two constants.  When there is a solid body with one 
boundary, A  must be zero in order to ensure finite-valued stresses and strains; C can be 
determined from the boundary condition.  When there are two boundaries, both A and C 
are determined from the boundary conditions. 
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4.3.5 Example: Expansion of a thick circular cylinder under 
internal pressure 

 
Consider the problem of Fig. 4.3.8.  The two unknown constants A and C are obtained 
from the boundary conditions 
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which lead to 
 
 

02)(,2)(
22

 C
b

A
bpC

a

A
a rrrr           (4.3.13) 

 
so that 
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Cylinder under Internal Pressure 
 

 
 

Figure 4.3.8: an internally pressurised cylinder 
 
The stresses through the thickness of the cylinder walls are shown in Fig. 4.3.9a.  The 
maximum principal stress is the   stress and this attains a maximum at the inner face.  

For this reason, internally pressurized vessels often fail there first, with microcracks 
perpendicular to the inner edge been driven by the tangential stress, as illustrated in Fig. 
4.3.9b. 
 
Note that by setting tab   and taking the wall thickness to be very small, att 2, , 
and letting ra  , the solution 4.3.14 reduces to: 
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which is equivalent to the thin-walled pressure-vessel solution, Part I, §4.5.2 (if 2/1 , 
i.e. incompressible). 
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Figure 4.3.9: (a) stresses in the thick-walled cylinder, (b) microcracks driven by 
tangential stress 

 
 
Generalised Plane Strain and Other Solutions 
 
The solution for a pressurized cylinder in plane strain was given above, i.e. where zz  was 
enforced to be zero. There are two other useful situations: 
(1) The cylinder is free to expand in the axial direction.  In this case, zz  is not forced to 

zero, but allowed to be a constant along the length of the cylinder, say zz .  The zz  

stress is zero, as in plane stress.  This situation is called generalized plane strain. 
(2) The cylinder is closed at its ends. Here, the axial stresses zz  inside the walls of the 

tube are counteracted by the internal pressure p acting on the closed ends. The force 
acting on the closed ends due to the pressure is 2p a  and the balancing axial force is 

 2 2
zz b a   , assuming zz  to be constant through the thickness. For equilibrium 
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Returning to the full three-dimensional stress-strain equations (Part I, Eqns. 4.2.9), set 

zzzz   , a constant, and 0 yzxz  .  Re-labelling zyx ,,  with zr ,, , and again with 

0 r , one has 
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Substituting the strain-displacement relations 4.3.2 into 4.3.16a-b, and, as before, using 
the axisymmetric equilibrium equation 4.3.5, again leads to the differential equation 4.3.6 
and the solution 1 2 /u C r C r  , with 2 2

1 2 1 2/ , /rr C C r C C r     , but now the 

stresses are 
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As before, to make the solution more amenable to stress boundary conditions, we let 

  1/2ECA  and    2112/1  ECC , so that the solution is 
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Generalised axisymmetric solution 
 
For internal pressure p, the solution to 4.3.19 gives the same solution for radial and 
tangential stresses as before, Eqn. 4.3.14. The axial displacement is zzz zu   (to within a 
constant). 
 
In the case of the cylinder with open ends (generalized plane strain), 0zz  , and one 

finds from Eqn. 4.3.19 that  2 22 / / 1 0zz p E b a     . In the case of the cylinder 

with closed ends, one finds that    2 21 2 / / 1 0zz p E b a     . 

 
A Transversely isotropic Cylinder  
 
Consider now a transversely isotropic cylinder.  The strain-displacement relations 4.3.2 
and the equilibrium equation 4.3.5 are applicable to any type of material.  The stress-
strain law can be expressed as (see Part I, Eqn. 6.2.14) 
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Here, take zzzz   , a constant.  Then, using the strain-displacement relations and the 
equilibrium equation, one again arrives at the differential equation 4.3.6 so the solution 
for displacement and strain is again 4.3.8a-b.  With  11122 / CCCA   and 

 12111 2/ CCCC  , the stresses can be expressed as 
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The plane strain solution then follows from 0zz  and the generalized plane strain 

solution from 0zz .  These solutions reduce to 4.3.11, 4.3.19 in the isotropic case. 
 
 
4.3.6 Stress Function Solution 
 
An alternative solution procedure for axisymmetric problems is the stress function 
approach.  To this end, first specialise equations 4.2.6 to the axisymmetric case: 
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One can check that these equations satisfy the axisymmetric equilibrium equation 4.3.4. 
 
The biharmonic equation in polar coordinates is given by Eqn. 4.2.7.  Specialising this to 
the axisymmetric case, that is, setting 0/   , leads to 
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Alternatively, one could have started with the compatibility relation 4.2.8, specialised that 
to the axisymmetric case: 
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and then combine with Hooke’s law 4.3.3 or 4.3.4, and 4.3.22, to again get 4.3.24. 
 
Eqn. 4.3.24 is an Euler-type ODE and has solution (see Appendix to this section, §4.3.8) 
 

DCrrBrrA  22 lnln                                   (4.3.26) 
 
The stresses then follow from 4.3.22: 
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The strains are obtained from the stress-strain relations.  For plane strain, one has, from 
4.3.4, 
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Comparing these with the strain-displacement relations 4.3.2, and integrating rr , one has 
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To ensure that one has a unique displacement ru , one must have 0B  and the constant 
of integration 0F , and so one again has the solution 4.3.113. 
 
 
4.3.7 Problems 
 
1. Derive the solution equations 4.3.11 for axisymmetric plane strain. 
   
2. A cylindrical rock specimen is subjected to a pressure pover its cylindrical face and is 

constrained in the axial direction.  What are the stresses, including the axial stress, in 
the specimen?  What are the displacements? 

 

                                                 
3 the biharmonic equation was derived using the expression for compatibility of strains (4.3.23 being the 
axisymmetric version).  In simply connected domains, i.e. bodies without holes, compatibility is assured 
(and indeed A and B must be zero in 4.3.26 to ensure finite strains).  In multiply connected domains, 
however, for example the hollow cylinder, the compatibility condition is necessary but not sufficient to 
ensure compatible strains (see, for example, Shames and Cozzarelli (1997)), and this is why compatibility 
of strains must be explicitly enforced as in 4.3.25 
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3. A long hollow tube is subjected to internal pressure ip  and external pressures op  and 

constrained in the axial direction. What is the stress state in the walls of the tube?  
What if ppp oi  ? 

 
4. A long mine tunnel of radius a is cut in deep rock.  Before the mine is constructed the 

rock is under a uniform pressure p.  Considering the rock to be an infinite, 
homogeneous elastic medium with elastic constants E and  , determine the radial 
displacement at the surface of the tunnel due to the excavation.  What radial stress 

Parr )(  should be applied to the wall of the tunnel to prevent any such 
displacement? 

 
5. A long hollow elastic tube is fitted to an inner rigid (immovable) shaft.  The tube is 

perfectly bonded to the shaft.  An external pressure p is applied to the tube.  What are 
the stresses and strains in the tube? 

 
6. Repeat Problem 3 for the case when the tube is free to expand in the axial direction.  

How much does the tube expand in the axial direction (take 0zu  at 0z )? 
 
 
4.3.8 Appendix  
 
Solution to Eqn. 4.3.6 
 
The differential equation 4.3.6 can be solved by a change of variable ter  , so that 
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and, using the chain rule, 
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The differential equation becomes 
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which is an ordinary differential equation with constant coefficients.  With teu  , one 
has the characteristic equation 012   and hence the solution 
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Solution to Eqn. 4.3.24 
 
The solution procedure for 4.3.24 is similar to that given above for 4.3.6.  Using the 
substitution ter   leads to the differential equation with constant coefficients 
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which, with te  , has the characteristic equation   02 22  .  This gives the 
repeated roots solution 
 

DCeBteAt tt  22                                 (4.3.33) 
 
and hence 4.3.24. 


