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3.2 The Stress Function Method 
 
An effective way of dealing with many two dimensional problems is to introduce a new 
“unknown”, the Airy stress function  , an idea brought to us by George Airy in 1862.  
The stresses are written in terms of this new function and a new differential equation is 
obtained, one which can be solved more easily than Navier’s equations. 
 
 
3.2.1 The Airy Stress Function 
 
The stress components are written in the form 
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     (3.2.1) 

 
Note that, unlike stress and displacement, the Airy stress function has no obvious physical 
meaning. 
 
The reason for writing the stresses in the form 3.2.1 is that, provided the body forces are 
zero, the equilibrium equations are automatically satisfied, which can be seen by 
substituting Eqns. 3.2.1 into Eqns. 2.2.3 {▲Problem 1}.  On this point, the body forces, 
for example gravitational forces, are generally very small compared to the effect of 
typical surface forces in elastic materials and may be safely ignored (see Problem 2 of 
§2.1).  When body forces are significant, Eqns. 3.2.1 can be amended and a solution 
obtained using the Airy stress function, but this approach will not be followed here.  A 
number of examples including non-zero body forces are examined later on, using a 
different solution method. 
 
 
3.2.2 The Biharmonic Equation 
 
The Compatability Condition and Stress-Strain Law 
 
In the previous section, it was shown how one needs to solve the equilibrium equations, 
the stress-strain constitutive law, and the strain-displacement relations, resulting in the 
differential equation for displacements, Eqn. 3.1.4.  An alternative approach is to ignore 
the displacements and attempt to solve for the stresses and strains only.  In other words, 
the strain-displacement equations 3.1.2 are ignored.  However, if one is solving for the 
strains but not the displacements, one must ensure that the compatibility equation 1.3.1 is 
satisfied. 
 
Eqns. 3.2.1 already ensures that the equilibrium equations are satisfied, so combine now 
the two dimensional compatibility relation and the stress-strain relations 3.1.1 to get 
{▲Problem 2} 
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Thus one has what is known as the biharmonic equation: 
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   The biharmonic equation     (3.2.3) 

 
The biharmonic equation is often written using the short-hand notation 04   . 
 
By using the Airy stress function representation, the problem of determining the stresses 
in an elastic body is reduced to that of finding a solution to the biharmonic partial 
differential equation 3.2.3 whose derivatives satisfy certain boundary conditions. 
 
Note that the biharmonic equation is independent of elastic constants, Young’s modulus E 
and Poisson’s ratio .  Thus for bodies in a state of plane stress or plane strain, the stress 
field is independent of the material properties, provided the boundary conditions are 
expressed in terms of tractions (stress) 1; boundary conditions on displacement will bring 
the elastic constants in through the stress-strain law.  Further, the plane stress and plane 
strain stress fields are identical. 
 
 
3.2.3 Some Simple Solutions 
 
Clearly, any polynomial of degree 3 or less will satisfy the biharmonic equation.  Here 
follow some elementary examples. 
 
(i) 2Ay  

 one has 0,2
2

2
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
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 xyyyxx A
y

 , a state if uniaxial tension 

 
(ii) Bxy  

 here, Bxyyyxx   ,0 , a state of pure shear 

 
(iii) BxyAy  2  

 here, BA xyyyxx   ,0,2 , a superposition of (i) and (ii) 

 
 
 

                                                 
1 technically speaking, this is true only in simply connected bodies, i.e. ones without any “holes”, since 
problems involving bodies with holes have an implied displacement condition (see, for example, Barber 
(1992), §2.2). 
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3.2.4 Pure Bending of a Beam 
 
Consider the bending of a rectangular beam by a moment 0M , as shown in Fig. 3.2.1.  

The elementary beam theory predicts that the stress xx  varies linearly with y, Fig. 3.2.1, 

with the 0y  axis along the beam-centre, so a good place to start would be to choose, or 

guess, as a stress function 3Cy , where C is some constant to be determined.  Then 

0,0,6  xyyyxx Cy  , and the boundary conditions along the top and bottom of 

the beam are clearly satisfied. 
 

 
 

Figure 3.2.1: a beam in pure bending 
 
The moment and stress distribution are related through 
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and so 3

0 4/ bMC   and 3
0 2/3 byMxx  .  The fact that this last expression agrees with 

the elementary beam theory ( IMy /  with 3/2 3hbI  , where h is the depth “into 
the page”) shows that that the beam theory is exact in this simple loading case. 
 
Assume now plane strain conditions.  In that case, there is another non-zero stress 
component, acting “perpendicular to the page”, 32/3)( byMyyxxzz   .  Using 

Eqns. 3.1.1b,  
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  (3.2.5) 

 
and the other four strains are zero. 
 
As in §1.2.4, once the strains have been found, the displacements can be found by 
integrating the strain-displacement relations.  Thus 
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  (3.2.6) 

 
Therefore )(yf   must be some constant, C  say, so ACyyf )( , and 

BxCxxg  2
2
1)(  .  Finally, 
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which are of the form 1.2.17.  For the case when the mid-point of the beam is fixed, so 
has no translation, 0)0,0()0,0(  yx uu , and if it has no rotation there, 0)0,0( z , then 

the three arbitrary constants are zero, and 
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3.2.5 A Cantilevered Beam 
 
Consider now the cantilevered beam shown in Fig. 3.2.2.  The beam is subjected to a 
uniform shear stress  xy  over its free end, Fig. 3.2.2a.  The boundary conditions are 

 
0),(),(,),0(,0),0(  bxbxyy xyyyxyxx             (3.2.9) 

 
It is difficult, if not impossible, to obtain concise expressions for stress and strain for 
problems even as simple as this2.  However, a concise solution can be obtained by 
relaxing one of the above conditions.  To this end, consider the similar problem of Fig. 
3.2.2b – this beam is subjected to a shear force F, the resultant of the shear stresses.  The 
applied force of Fig. 3.2.2b is equivalent to that in Fig. 3.2.2a if 
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2 an exact solution will usually require an infinite series of terms for the stress and strain 



Section 3.2 

Solid Mechanics Part II                                                                                Kelly 50

This is known as a weak boundary condition, since the stress is not specified in a point-
wise sense along the boundary – only the resultant is.  However, from Saint-Venant’s 
principle (Part I, §3.3.2), the stress field in both beams will be the same except for in a 
region close to the applied load.   
 

 
 

Figure 3.2.2: A cantilevered beam subjected to; (a) a uniform distribution of shear 
stresses along its free end, (b) a shear force along its free end 

 
The elementary beam theory predicts a stress IFxyIMyxx //  .  Thus a good place 

to start is to choose the stress function 3xy  , where   is a constant to be determined.  
The stresses are then 
 

23,0,6 yxy xyyyxx          (3.2.11) 

 
However, it can be seen that 03),( 2  bbxxy  .  To offset this, one can superimpose 

a constant shear stress 23 b , in other words amend the stress function to 
 

xybxy 23 3      (3.2.12) 
 
The boundary conditions are now satisfied and, from Eqn. 3.2.10, 
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and so 
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3.2.6 Problems 
 
 
1. Verify that the relations 3.2.1 satisfy the equilibrium equations 2.2.3. 
 
2. Derive Eqn. 3.2.2. 
 
3. A large thin plate is subjected to certain boundary conditions on its thin edges (with 

its large faces free of stress), leading to the stress function  
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523 BxyAx   
(i) use the biharmonic equation to express A in terms of B 
(ii) calculate all stress components 
(iii) calculate all strain components (in terms of B, E,  ) 
(iv) derive an expression for the volumetric strain, in terms of B, E,  , x and y. 
(v) check that the compatibility equation is satisfied 
(vi) check that the equilibrium equations are satisfied 

 
4. A very thick component has the same boundary conditions on any given cross-

section, leading to the following stress function: 
5324 4 yyxyx   

(i) is this a valid stress function, i.e. does it satisfy the biharmonic equation? 
(ii) calculate all stress components (with 4/1 ) 
(iii) calculate all strain components 
(iv) find the displacements 
(v) specify any three displacement components which will render the arbitrary 

constant displacements of (iv) zero 
 

5. For the cantilevered beam discussed in §3.2.5, evaluate the resultant shear force and 
moment on an arbitrary cross-section xx  .  Are they as you expect?  (You will find 
that the beam is in equilibrium, as expected, since the equilibrium equations have 
been satisfied.) 

 
6. For the cantilevered beam discussed in §3.2.5, evaluate the strains and displacements, 

assuming plane stress conditions. 
Note: to evaluate the three arbitrary constants of integration, one would be tempted to 
apply the obvious 0 yx uu  all along the built-in end.  However, since only weak 

boundary conditions were imposed, one cannot enforce these strong conditions (try 
it).  Instead, apply the following weaker conditions: (i) the displacement at the built-in 
end at 0y  is zero ( 0 yx uu ), (ii) the slope there, xu y  / , is zero. 

 
7. Show that the stress function 
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satisfies the boundary conditions for the simply supported beam subjected to a 
uniform pressure p shown below.  Check the boundary conditions in the weak (Saint-
Venant) sense on the shorter left and right hand sides (for both normal and shear 
stress).  Since the normal stress xx  is not zero at the ends, but only its resultant, 

check also that the moment is zero at each end. 
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Note that the elementary beam theory predicts an approximate flexural stress but an 
exact shear stress: 
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8. Consider the dam shown in the figure below.  Assume first a general cubic stress 

function 
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Apply the boundary conditions to determine the constants and hence the stresses in 
the dam, in terms of  , the density of water.  (Use the stress transformation equations 
for the sloped boundary and ignore the weight of the dam.) 
[Just consider the effect of the water; to these must be added the stresses resulting 
from the weight of the dam itself, which are given by 
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where s  is the density of the dam material.] 
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