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2 One-Dimensional 
Elasticity 

 
There are two types of one-dimensional problems, the elastostatic problem and the 
elastodynamic problem.  The elastostatic problem gives rise to a second order 
differential equation in displacement which may be solved using elementary 
integration.  The elastodynamic problem gives rise to the one-dimensional wave 
equation, whose solution predicts the propagation of stress waves and vibrations of 
material particles  
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2.1 One-dimensional Elastostatics 
 
Consider a bar or rod made of linearly elastic material subjected to some load.  Static 
problems will be considered here, by which is meant it is not necessary to know how the 
load was applied, or how the material particles moved to reach the stressed state; it is 
necessary only that the load was applied slowly enough so that the accelerations are zero, 
or that it was applied sufficiently long ago that any vibrations have died away and 
movement has ceased. 
 
The equations governing the static response of the rod are: 
 

0=+ b
dx
dσ      Equation of Equilibrium    (2.1.1a) 

dx
du

=ε     Strain-Displacement Relation    (2.1.1b) 

εσ E=          Constitutive Equation    (2.1.1c) 
 
where E is the Young’s modulus, ρ  is the density and b is a body force (per unit 
volume).  The unknowns of the problem are the stress σ , strain ε  and displacement u. 
 
These equations can be combined to give a second order differential equation in u, called 
Navier’s Equation: 
 

02

2

=+
E
b

dx
ud

          1-D Navier’s Equation     (2.1.2) 

 
One requires two boundary conditions to obtain a solution.  Let the length of the rod be 
L and the x axis be positioned as in Fig. 2.1.1.  The possible boundary conditions are then 
 

1. displacement specified at both ends (“fixed-fixed”) 
LuLuuu == )(,)0( 0  

2. stress specified at both ends (“free-free”) 
LL σσσσ == )(,)0( 0  

3. displacement specified at left-end, stress specified at right-end (“fixed-free”): 
LLuu σσ == )(,)0( 0  

4. stress specified at left-end, displacement specified at right-end (“free-fixed”): 
LuLu == )(,)0( 0σσ  

 

 
 

Figure 2.1.1: an elastic rod 
 

x

L
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Note that, from 2.1.1b-c, a stress boundary condition is a condition on the first derivative 
of u. 
 
Example 
 
Consider a rod in the absence of any body forces subjected to an applied stress oσ , Fig. 
2.1.2.   
 

 
 

Figure 2.1.2: an elastic rod subjected to stress 
 

The equation to solve is 
 

02

2

=
dx

ud      (2.1.3) 

 
subject to the boundary conditions 
 

Edx
u

Edx
u

Lxx

00

0

,
σσ

=
∂

=
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==

                                        (2.1.4) 

 
Integrating twice and applying the conditions gives the solution 
 

Bx
E

u += 0σ
       (2.1.5) 

 
The stress is thus a constant 0σ  and the strain is Eo /σ .  There is still an arbitrary 
constant B and this physically represents a possible rigid body translation of the rod.  To 
remove this arbitrariness, one must specify the displacement at some point in the rod.  For 
example, if 0)2/( =Lu , the complete solution is 
 

o
oo

E
Lx

E
u σσ

σ
ε

σ
==⎟

⎠
⎞

⎜
⎝
⎛ −= ,,

2
       (2.1.6) 

 
 
2.1.1 Problems 
 
1. What are the displacements of material particles in an elastic bar of length L and 

density ρ  which hangs from a ceiling (see Fig. 1.1.2). 
 
2. Consider a steel rod ( GPa210=E , 3g/cm85.7=ρ ) of length cm30 , fixed at one 

end and subjected to a displacement mm1=u at the other.  Solve for the stress, strain 
and displacement for the case of gravity acting along the rod.  What is the solution in 
the absence of gravity.  How significant is the effect of gravity on the stress? 

oσ oσ
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2.2 One-dimensional Elastodynamics 
 
In rigid body dynamics, it is assumed that when a force is applied to one point of an 
object, every other point in the object is set in motion simultaneously.  On the other hand, 
in static elasticity, it is assumed that the object is at rest and is in equilibrium under the 
action of the applied forces; the material may well have undergone considerable changes 
in deformation when first struck, but one is only concerned with the final static 
equilibrium state of the object. 
 
Elastostatics and rigid body dynamics are sufficiently accurate for many problems but 
when one is considering the effects of forces which are applied rapidly, or for very short 
periods of time, the effects must be considered in terms of the propagation of stress 
waves. 
 
The analysis presented below is for one-dimensional deformations.  Inherent are the 
assumptions that (1) material properties are uniform over a plane perpendicular to the 
longitudinal direction, (2) plane sections remain plane and perpendicular to the 
longitudinal direction and (3) there is no transverse displacement. 
 
 
2.2.1 The Wave Equation 
 
Consider now the dynamic problem.  In this case ( , )u u x t  and one considers the 
governing equations: 
 

b a
x
 
 


            Equation of Motion    (2.2.1a) 

u
x

 



    Strain-Displacement Relation    (2.2.1b) 

 E          Constitutive Equation    (2.2.1c) 
 
where a is the acceleration.  Expressing the acceleration in terms of the displacement, one 
then obtains the dynamic version of Navier’s equation, 
 

2

2

2

2

t
ub

x
uE






       1-D Navier’s Equation            (2.2.2) 

 
In most situations, the body forces will be negligible, and so consider the partial 
differential equation 
 

2

2

22

2 1

t
u

cx
u








     1-D Wave Equation                   (2.2.3) 

 
where 
 

     

Ec                                                               (2.2.4) 



Section 2.2 

Solid Mechanics Part II                                                                                Kelly 24

 
Equation 2.2.3 is the standard one-dimensional wave equation with wave speed c; note 
from 2.2.4 that c has dimensions of velocity. 
 
The solution to 2.2.3 (see below) shows that a stress wave travels at speed c through the 
material from the point of disturbance, e.g. applied load.  When the stress wave reaches a 
given material particle, the particle vibrates about an equilibrium position, Fig. 2.2.1.  
Since the material is elastic, no energy is lost, and the solution predicts that the particle 
will vibrate indefinitely, without damping or decay, unless that energy is transferred to a 
neighbouring particle. 
 

 
 

Figure 2.2.1: stress wave travelling at speed c through an elastic rod 
 
This type of wave, where the disturbance (particle vibration) is in the same direction as 
the direction of wave propagation, is called a longitudinal wave. 
 
The wave equation is solved subject to the initial conditions and boundary conditions.  
The initial conditions are that the displacement u and the particle velocity /u t   are 
specified at 0t   (for all x).  The boundary conditions are that the displacement u and the 
first derivative  /u x   are specified (for all t).  This latter derivative is the strain, which 
is proportional to the stress (see Eqn. 2.2.1b).  In problems where there is no boundary (an 
infinite medium), no boundary conditions are explicitly applied.  A semi-infinite medium 
will have one boundary.  For a rod of finite length, there will be two boundaries and a 
boundary condition will be applied to each boundary. 
 
 
2.2.2 Particle Velocities and Wave Speed 
 
Before examining the wave equation 2.2.3 directly, first re-express it as 
 

t
v

x 




                                                          (2.2.5) 

 
where v is the velocity.  Consider an element of material which has just been reached by 
the stress wave, Fig. 2.2.2.  The length of material passed by the stress wave in a time 
interval t  is tc .  During this time interval, the stressed material at the left-hand side of 
the element moves at (average) velocity v and so moves an amount tv .  The strain of the 
element is then the change in length divided by the original length: 
 

                                
c
v

                                                           (2.2.6)  

 

stress free 



vibration of 
stressed particle 

stress wave 
at speed c 
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Under the small strain assumption, this implies that cv  1. 
 
Let the stress acting on the element be  ; the stress on the free side of the element is 
zero.  Then 2.2.5 leads to 
 

t
v

tc 



                                                          (2.2.7) 

 
and so 
 

cv                                                          (2.2.8) 
 
This is the discontinuity in stress across the wave front. 
 

 
 

Figure 2.2.2: stress wave passing through a material element 
 

Since  E , one has /Ec  , as in 2.2.4.  The wave speeds for some materials 

are given in Table 2.2.1.  As can be seen, the wave speeds for typical engineering 
materials are of the order km/s  and so particle velocities will be in the range m/s500  . 
 

Material  3kg/m   GPaE   m/sc  

Aluminium Alloy 2700 70 5092 
Brass 8300 95 3383 

Copper 8500 114 3662 
Lead 11300 17.5 1244 
Steel 7800 210 5189 
Glass 1870 55 5300 

Granite 2700 26 3120 
Limestone 2600 63 4920 

Perspex 490 2.5 2260 
Table 2.2.1: Elastic Wave Speeds for Several Materials 

 

                                                 
1 note also that the density of the element will change as it is compressed, but again this change in density is 
small and can be neglected in the linear elastic theory 

wave front 
at time t 

tc



tv

wave front 
at time tt 
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Consider steel: the velocity at which the material ceases to behave linearly elastic (taking 
the yield stress to be 400MPa) is / 10m/sv Y c  . 
 
 
2.2.3 Waves 
 
Before proceeding, it will be helpful to review and summarise the important facts and 
terminology regarding waves. 
 
Suppose that there is a displacement u which is propagated along the x axis at velocity c.  
At time 0t   say, the disturbance will have some wave profile ( )u f x .  If the 
disturbance propagates without change of shape, then at some later time t the profile will 
look identical but it will have moved a distance ct in the positive direction.  If we take a 
new origin at the point x ct  and let the distance measured from this origin be x , then 
the equation of the new wave profile referred to this new origin would be ( )u f x .  
Referred to the original fixed origin, then, 
 

  u f x ct  .                                     (2.2.9) 

 
This is the most general expression for a wave travelling at constant velocity c and 
without change of shape, along the positive x axis.  If the wave is travelling in the 
negative direction, then its form would be  u f x ct  . 

 
The simplest type of wave of this kind is the harmonic wave, in which the wave profile 
is a sine or cosine curve.  If the wave profile at time 0t   is  cosu a kx , then at time t 
the profile is 
 

  cosu a k x ct    .                             (2.2.10) 

 
The maximum value of the disturbance, a, is called the amplitude.  The wave profile 
repeats itself at regular distances 2 / k , which is called the wavelength  .  The 
parameter k is called the wave number2; since there is one wave in   units of distance, it 
is the number of waves in 2  units of distance: 
 

2k 


 .                                       (2.2.11) 

 
The distance travelled by the wave in time t is ct .  The time taken for one complete wave 
to pass any point is called the period T, which is the time taken to travel one wavelength: 
  

T
c


 .                                       (2.2.12) 

 
The frequency f is the number of waves passing a fixed point in unit time, so 

                                                 
2 more specifically, this is the angular wavenumber, to distinguish it from the (spectroscopic) 
wavenumber 1 /   
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1 cf
T 

                                             (2.2.13) 

 
The angular frequency is 2 f kc   . 
 
As the wave travels along, the particle at any fixed point displaces back and forth about 
some equilibrium position; the particle is said to vibrate.  The period and frequency were 
defined above in terms of the time taken for a wave to travel along the x axis.  It can be 
seen that the period T is also equivalent to the time taken for a particle to displace away 
and then back to its original position, then off in the other direction and back again; the 
frequency f can also be seen to be equivalent to the number of times the particle vibrates 
about its equilibrium position in unit time. 
 
The wave 2.2.10 can be expressed in the equivalent forms: 
 

 

 

 

cos

2
cos

cos 2

cos 2

cos

u a k x ct

u a x ct

x tu a
T

xu a t

u a kx t







 



   
    
       
   
 

 

                            (2.2.14) 

 
If one has two waves,  1 cosu a kx t   and  2 cosu a kx t    , then the waves are 

the same except they are displaced relative to each other by an amount / / 2k   ;   

is called the phase of 2u  relative to 1u . If   is a multiple of 2 , then the displaced 

distance is a multiple of the wavelength, and the waves are said to be in phase. 
 
It can be verified by substitution that the wave 2.2.14 is a solution of the wave equation 
2.2.3. 
 
Example 
 
Fig. 2.2.3 shows a wave travelling through steel and vibrating at frequency 1kHzf  .  
Using the data in Table 2.2.1, the wave number is 2 / 1.21k f c    and the wavelength 
is / 5.2c f   .  The period is 1 /1000T   sec .  For unit amplitude, 1a  , the wave 

profiles are shown for 0t   (blue) and 1 /1500t   sec 2
3( )T  (red).  The dashed arrows 

show the movement of one particle as the wave passes. 
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Figure 2.2.3: harmonic wave (Eqn. 2.2.10) travelling through steel at 1 kHz; 1a   

with 0t   (blue) and 1 /1500t   (red) 
 
 
Standing Waves 
 
Because the wave equation is linear, any linear combination of waves is also a solution.  
In particular, consider two waves which are similar, only travelling in opposite directions; 
the superposition of these waves is the new wave 
 

   
   

cos cos

2 cos cos

u a kx t a kx t

a kx t

 



   


                            (2.2.15) 

 
It will be seen that this wave profile does not move forward, and is therefore called a 
standing wave (to distinguish it from the progressive waves considered earlier).  An 
example is shown in Fig. 2.2.4 (same parameters as for Fig. 2.2.3); at any fixed point, the 
wave moves up and down over time.  The period is again 1 /1000T   sec.  Shown is the 
wave at five instants, from 0t   up to just short of the half-period. 
 
Note that 0u   for (2 1) / 2x n k   , 0,1,2,n   ; these are called the nodes of the 
wave.  The intermediate points, where the amplitude is greatest, are called antinodes.  
The distance between successive nodes (or antinodes) is half the wavelength. 
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Figure 2.2.4: standing wave (Eqn. 2.2.15) in steel at 1 kHz; with 1a  at 0t   

(black), 0.0001t   (red), 0.0002t   (green dashed), 0.0003t   (blue dotted) and 
0.0004t   (red dotted) 

 
If the wave is not harmonic, one can use a Fourier analysis (see below) to construct the 
wave out of a sum of individual harmonic waves; if the profile consists of a regularly 
repeating pattern, the definitions of wavelength, period, frequency and wave number, and 
the relations between them, Eqns. 2.2.11-13, still apply. 
 
Complex Exponential Representation 
 
When dealing with progressive waves of harmonic type, it is usually best to represent the 
wave using a complex exponential function.  The reason for this is that exponentials are 
algebraically simpler than harmonic functions, and also the amplitude and phase are 
represented by one complex quantity rather than by two separate terms (as will be seen 
below). 
 
The general wave of the form 
 

 cosu a kx t                                          (2.2.16) 

 
is the real part of the complex exponential 
 

     cos sini kx tae a kx t i kx t                            (2.2.17) 

 
The phase shift and amplitude can be absorbed into a new constant A: 
 

 i kx tu Ae  ,  iA ae                                         (2.2.18) 
 
It can be verified that this complex quantity is itself a solution of the wave equation, Eqn. 
2.2.3 (and if a complex quantity is a solution, so are its real and imaginary parts).  One 
can carry out analyses using the complex expression 2.2.18, keeping in mind that the 
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“real” solution, Eqn. 2.2.16, is the real part of this expression.  Since   1i kx te   , the true 

amplitude is A .  The true phase shift    is the argument of A, arg A .  

 
Eqn. 2.2.16 is a wave travelling to the “right”.  It has been seen how a wave travelling to 
the right is of the form  cosu a kx t  , suggesting a complex representation 

 i kx tu Ae  .  However, this is not an ideal representation, because the difference 
between a wave travelling left or right, i.e. the difference between this expression and the 
one in Eqn. 2.2.17, is given by the sign of the frequency.  This can make it difficult to 
solve problems involving reflecting waves3 (see below), and therefore it is best to use the 
following representations when adding and subtracting waves: 
 

Travelling right:  i kx tAe                     (2.2.19a) 

Travelling left:  i kx tAe                   (2.2.19b) 
 

(Note: another popular convention is to use  i kx tAe    for right and  i kx tAe    for left.) 
 
 
2.2.4 Solution of the Wave Equation (D’Alembert’s Solution) 
 
The one-dimensional wave equation 2.2.3 has the very general solution (this is 
D’Alembert’s solution – see the Appendix to this section for its derivation) 
 

   ctxgctxftxu ),(                                      (2.2.20) 
 
where f and g are any functions4; for example, one solution is  ctxgef ctx   sin, , 
which can be verified by substitution and carrying out the differentiation.  The harmonic 
waves considered above are special cases of this solution, in which f and g are cosine 
functions.  The actual forms of the functions f and g can be determined from the initial 
conditions of the problem, which are the initial displacement profile ( ,0)u x  and the 

initial velocity  
( ,0)

,0 /
x

v x u t   .  Consider the arbitrary initial conditions  

 
( ,0) ( )

( ,0) ( )

u x U x
v x V x




                                                  (2.2.21) 

 
Then, as shown in the Appendix to this section, the solution is 
 

   1 1
( , ) ( )

2 2

x ct

x ct

u x t U x ct U x ct V d
c

 




                         (2.2.22) 

                                                 
3 for example, when a wave hits a boundary and gets reflected, this representation would force the incident 
and reflected waves to have different frequencies, when in fact a solution in which the frequencies are the 
same is often sought 
4 provided they possess second derivatives 
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Example 
 
Suppose for example that the initial displacement profile was triangular, with maximum 
displacement uu   at 0x , extending to Lx  , Fig. 2.2.5. 
 

 
 

Figure 2.2.5: an initial triangular displacement 
 
The initial conditions are  
 

0,

( ) ( ,0) (1 / ), 0

(1 / ), 0

x L
U x u x u x L L x

u x L x L


     
    

 

 
and ( ) 0V x  .  D’Alembert’s solution is then 
 

 1
2( , ) ( ) ( )u x t U x ct U x ct     

 
The solution predicts that at time cL /2  there are two triangular displacement profiles of 
half the magnitude of the original profile; one is to the left and the other is to the right of 
the original profile, Fig. 2.2.6. 
 

 
 

Figure 2.2.6: displacements at time 2L/c 
 
As the wave passes, particles displace from their equilibrium point, up to the maximum 
position and then back again.  It can be seen that the solution corresponds to a wave of 
disturbed material propagating through the material from the source, half in one direction 
and half in the other. 
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2.2.5 Reflection and Transmission 
 
Let a train of harmonic waves travel from the negative x direction in a material with 
material properties 1 1,E  .  The waves then meet a second material with different material 

properties 2 2,E  , at the origin 0x  .  Let the displacements in the first material be 1u  

and those in the second, 2u .  As will be seen, the incident wave upon the second material 

will suffer partial reflection and partial transmission.  Using the complex exponential 
representation, Eqn. 2.2.19, and superscripts “i” for incident, “r” for reflected and “t” for 
transmitted: 
 

( ) ( ) ( )
1 2,i r tu u u u u                                         (2.2.23) 

 
with 
 

     1 1 2( ) ( ) ( ), ,i k x t i k x t i k x ti r t
i r tu Ae u A e u Ae                         (2.2.24) 

 

1A  is real, but in general 1 2,B A  could be complex.  The wave speeds c in each material 

will be different (if the material properties are different). The frequencies of all three 
waves are the same – since the material is connected to adjacent material, it must all be 
vibrating at the same frequency.  It follows that the wavenumbers k differ also: 
 

1 2 1
1 1 2 2

2 1 2

or
k Ek c k c
k E




                                   (2.2.25) 

 
The boundary conditions at the material interface are that 
 

1 2

1 2
1 2

(0, ) (0, )

(0, ) (0, )

t t

u t u t
u uE E
x x



 


 
                                            (2.2.26) 

 
The first of these says that the material remains continuous at the interface.  The second 
says that the stress is also continuous there (see Eqns. 2.2.1b-c).  Applying these to Eqn. 
2.2.23 gives 
 

1 1 1 1 2 2

i r t

i r t

A A A
A E k A E k A E k

 
 

                                       (2.2.27) 

 
so that 
 

1 2
,

1 1r i t iA A A A
 


 

 
                                    (2.2.28) 

 
where 
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2 2 2 2 2 2

1 1 1 1 1 1

E k c E
E k c E

 
 

                                        (2.2.29) 

 
Note that, since iA  is real, so also are ,r tA A . 

 
The stresses are given by 
 

( ) ( ) ( ) ( ) ( ) ( )2 2

1 1

1 2
,

1 1
r i i t i ir t

i i

A A E k
A A E k

      
 


    
 

           (2.2.30) 

 
The parameter   determines the nature of the reflected and transmitted waves, and is the 
ratio of the quantities c  of each material; this quantity c  is often referred to as the 
mechanical impedance of the rod.  Note that the stiffness E and density   are 

independent, so if 2 1E E , this does not imply that 2 1   or that 1   (see Table 

2.2.1). 
 
When 1  , the reflected wave has opposite sign to that of the incident wave and has a 
smaller amplitude.  The transmitted wave is of the same sign and is also smaller.  In the 
limit as    , which would represent a perfectly rigid material 2 ( 2E  ), there is no 

transmitted wave and the reflected wave has amplitude r iA A  .  The stress at the 

boundary is twice the stress due to the incident wave alone. 
 
When 1  , the reflected wave has the same sign to that of the incident wave and has a 
smaller amplitude.  The transmitted wave is of the same sign and is larger.  In the limit as 

0  , which would represent “empty” material 2, the reflected wave is equal to the 
incident wave.  The stress at the boundary is zero – this is called a “free boundary” (see 
below). 
  
Examples of harmonic waves travelling through steel and granite are shown in Fig. 2.2.7.  
The frequency of vibration is taken to be 1kHzf  .  Using the data in Table 2.2.1, the 

wave numbers are  2 / 1.21s sk f c   and 2 / 2.01g gk f c  .  The wavelengths of 

the waves are / 5.2s sc f    and / 3.1g gc f   .  The incident wave is taken to have 

unit amplitude.  When the wave travels from steel into granite, 0.207   and when it 
travels from granite into steel it is the inverse of this, 4.83  .  The interference between 
the incident and reflected waves produce a new wave in material “1” (denoted by the 
green plots in Fig. 2.2.7): 
 

   1

1
cos cos

1
u a kx t kx t 


 

     
                     (2.2.31) 

 
Note that t iA A  at time 0t   (full reflected and transmitted wave profiles are plotted at 

time zero, even though there is no actual wave present right through the material yet at 
this time). 
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Figure 2.2.7: reflection and transmission of harmonic waves at the boundary 
between steel and granite; at time 0t   (solid) and time 1 /1500t   (dashed); 
incident (black), reflected (blue), transmitted (red) and composite wave in material 
“1” (green) 
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2.2.6 Energy in Vibrating Bars 
 

The kinetic energy in an element of length dx  of the bar is  21
2 /dK A u t dx   , where 

A is the cross-sectional area.   The total kinetic energy in a bar of length L is then 
 

 2

0

1
/

2

L

K A u t dx   ,                                (2.2.32) 

 
The potential energy is the elastic strain energy; for a small element of length dx  this is 

1
2dW Adx , so 

 

 2

0

1
/

2

L

W AE u x dx   ,                                (2.2.33) 

 
 
2.2.7 Solution of the Wave Equation (Standing Waves) 
 
D’Alembert’s solution gives results for progressive waves travelling in an infinitely 
extended medium.  Standing waves in an infinite medium can also be a solution.  For 
example if one has the initial profile  ( ) cosU x a kx  and zero initial velocity, 

( ) 0V x  , one gets from Eqn. 2.2.22 the standing wave 2.2.15. 
 
Standing waves can be generated more generally by using a separation of variables 
solution procedure for Eqn. 2.2.3.  Using this method, detailed in the Appendix to this 
section, one has the general solution 
 

   
1

( , ) cos sin cos sinn n n n n n n n
n

u x t A k x B k x C ck t D ck t




      (2.2.34) 

 
The (infinite number of) constants , , ,A B C D  and eigenvalues5 k can be obtained from 
the initial and boundary conditions (see later).  What are termed “eigenvalues” in this 
context can be seen to be the wave number.  
 
The terms cos nk x  and sin nk x  are called modes or mode shapes.  At any given time t, 
the displacement is a linear combination of these modes.  Example modes are shown in 
Fig. 2.2.8.  Some modes will dominate over others, for example perhaps only the first few 
modes (terms in the series 2.2.34) are significant and need be considered. 
 

                                                 
5 note that some authors use the term “eigenvalue” to mean the quantity  nck  in this expression 
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Figure 2.2.8: mode shapes for a vibrating elastic rod 

 
 
Natural Frequencies 
 
The eigenvalues (or, equivalently, the natural frequencies ck  ) depend on the 
boundary conditions.  There are four possible cases for the one-dimensional rod.  Taking 
the bar to have end-points 0,x L , the boundary conditions are (these are the same as for 
the static elasticity problem): 
 

1. fixed-fixed - 0),0( tu , 0),( tLu  

2. free-free  -  0/
),0(


t
xu , 0/

),(


tL
xu  

3. fixed-free  -  0),0( tu , 0/
),(


tL
xu                 (2.2.35) 

4. free-fixed  -  0/
),0(


t
xu , 0),( tLu  

 
The natural frequencies and modes for each of these boundary conditions are solved for 
and given in the Appendix to this section (in the boxes).  For example, considering the 
“fixed-fixed” case, the solution is 

 

 
0

( , ) cos( ) sin( ) sin( )n n n n n
n

u x t A k ct B k ct k x




        (2.2.36) 

 
with 

 

Frequencies: , 0,1,n n
n ck c n

L
      

Modes:  sin , 0,1,nk x n                                                  (2.2.37) 

 
One can plot these sine functions over ],0[ L  to see the displacement profile of each mode 
(the first three are those plotted in Fig. 2.2.8 – it can be seen that the higher the mode, the 
higher the frequency). 
 
The complete solution and precise profile is then obtained by applying the initial 
conditions of the problem to determine the coefficients ,n nA B  in Eqn. 2.2.36.  Some 

examples of this complete calculation are given in the Appendix. 
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Vibration Analysis 
 
A vibration analysis is one in which the eigenvalues (natural frequencies) and modes are 
evaluated without regard to which of them might be important in an application.  The 
boundary conditions alone determine the modes and natural frequencies.  Thus a 
vibration analysis is carried out without regard to how the vibration is initiated.  The 
exact combination of the modes for a particular problem is determined from the initial 
conditions; the initial conditions will determine the arbitrary constants in the above 
equations and hence the actual amplitude of vibration. 
 
The vibration is termed free if the load is zero or constant; forced vibration occurs when 
the load itself oscillates. 
 
Even though a vibration analysis does not completely solve the problem of a material 
model loaded in a certain way, for example solving for the propagation paths of stress 
waves, the amplitudes of vibration, and so on, the natural frequencies and modes are very 
useful information in themselves, for design and other purposes. 
 
Dynamic response analysis or transient response analysis is the calculation of the 
complete response to any arbitrary boundary and initial conditions.  This is more difficult 
than the vibration analysis, since it is a time-dependent problem. 
 
Non-Homogeneous Boundary Conditions 
 
The boundary conditions in 2.2.35 are all homogeneous (i.e. 0u   or / 0u x   ).  In 
practice, the boundary conditions will not be homogeneous, but the natural frequencies do 
not depend on whether the boundary conditions are homogeneous or non-homogeneous.  
In other words, if one wants to determine the natural frequencies, one needs only consider 
the case of homogeneous boundary conditions, as will be seen now. 
 
Consider the following non-homogeneous boundary conditions: 
 

BC’s: utu ˆ),0(  , 0),( tLu                                            (2.2.38) 
 

Since the wave equation is linear, the solution can be written as the superposition of two 
separate solutions, 
 

),(),(),( txutxutxu hp           (2.2.39) 

 
The hu  is the homogeneous solution, and is chosen to satisfy the wave equation with 

homogeneous boundary conditions; pu  is some particular solution and accounts for the 

non-homogeneous boundary condition: 
 

BC’s: 0),0( tuh ,  0),( tLuh  

utu p ˆ),0(  ,  0),( tLu p                                         (2.2.40) 

 
Substituting 2.2.39 into the wave equation 2.2.3 gives 
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



























2

2

22

2

2

2

22

2 11

t
u

cx
u

t
u

cx
u pphh    (2.2.41) 

 
The left hand side is zero.  The right hand side can be made zero by choosing pu  to be 

any particular solution of the wave equation.  For a simple constant displacement 
boundary condition, one can choose the linear function 
 







 

L
xuxu p 1ˆ)(                        (2.2.42) 

 
which can be seen to satisfy 2.2.40b.  The complete solution u  is illustrated in Fig. 2.2.9.  
 

 
 

Figure 2.2.9: displacements as a superposition of two separate solutions 
 
Suppose now that the initial conditions are 
 

IC’s: 
)()0,(

)()0,(

xvxv
xuxu




                                               (2.2.43) 

 
The initial conditions can be split between hu  and pu  according to 

 

IC’s: 
)()0,(),()()0,(

)()0,(),()()0,(

xvxvxvxvxv

xuxuxuxuxu

ppph

ppph




      (2.2.44) 

 
Thus, the complete solution is obtained by adding together: 
 

(i) the function hu  which satisfies the wave equation with homogeneous boundary 

conditions on displacement, and initial conditions 

IC’s: 
)()()0,(

)()()0,(

xvxvxv

xuxuxu

ph

ph




 

 
(ii) the function  

                                     





 

L
xuxu p 1ˆ)(  

 
Thus, using the “fixed-fixed” homogeneous solution from the Appendix, 
 

û

0 L

)(xup

)0,(xu
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 
0

ˆ( , ) 1 cos( ) sin( ) sin( )n n n n n
n

xu x t u A k ct B k ct k x
L





     
 

           (2.2.45) 

 
and the natural frequencies are given by 2.2.37.  The constants nn BA ,  can be obtained 

from the initial conditions, as outlined in the Appendix. 
 
The important point to be made here is that the modes and natural frequencies are 
determined from (i), i.e. the problem involving the homogeneous boundary conditions, 
and so, as stated above, the non-homogeneous boundary condition does not affect the 
modes and natural frequencies. 
 
Forced Vibration 
 
Suppose now that the boundary conditions and initial conditions are given by 
 

BC’s:  
 

0),(

cos),0(




tLu
ttu 

,     IC’s:  
 

0)0,(

2/cosˆ)0,(




xv
Lxuxu 

               (2.2.46) 

 
Again, let ),(),(),( txutxutxu hp   and substitute into the wave equation.  In this case, 

the particular solution will be of the general form 2.2.34, 
 

   cos sin cos sinpu A kx B kx C ckt D ckt              (2.2.47) 

 
Applying the boundary conditions, one finds that {▲Problem 1} 
 

 t
c
x

c
L

c
xtxu p 















 







 






  cossincotcos),(                          (2.2.48) 

 
As with the constant non-homogeneous boundary condition, the initial conditions can 
now be split appropriately between the homogeneous and particular solutions.  Again, the 
complete solution is obtained by adding together: 
 

(i) the function hu  which satisfies the wave equation with homogeneous boundary 

conditions on displacement, and initial conditions 

IC’s: 

0)0,(

sincotcos
2

cosˆ)0,(
















 







 






 








xv
c
x

c
L

c
x

L
xuxu

h

h 
 

 
(ii) the function 2.2.48 

 
The complete solution is 
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 

 
0

( , ) cos cot sin cos

cos( ) sin( ) sin( )n n n n n
n

x l xu x t t
c c c

A k ct B k ct k x







                
      

 
                    (2.2.49) 

 
Resonance occurs when the displacements become “infinite”, which from 2.2.49 occurs 
when 
 

L
cn

c
L 




0sin . 

 
These are precisely the natural frequencies of the system, i.e. the natural frequencies of 
(i).  Thus the problem of resonance becomes more prominent when the forcing frequency 
  approaches any of the natural frequencies nk . 

 
 
2.2.8 Problems 
 
1. Consider the case of forced vibration.  Use the boundary conditions 2.2.46 to 

evaluate the constants in the particular solution 2.2.47 and hence derive the particular 
solution 2.2.48. 

 
2. Consider a fixed-free problem, with the end 0x  subjected to a forced displacement 

tu  sin  and the end Lx   free. 
(a) Find the vibration of the material.  What are the natural frequencies? 
(b) When does resonance occur? 
[note: the appropriate homogeneous solution and natural frequencies are given in the 
Appendix to this section] 

 
3. Consider a vibrating bar with an oscillatory stress applied to one end, 

  t cos0  .  The end Lx   is fixed, 0)( Lu . 
(a) Find the vibration of the material.  What are the natural frequencies? 
(b) When does resonance occur? 
[note: the appropriate homogeneous solution and natural frequencies are given in the 
Appendix to this section] 
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2.2.9 Appendix to Section 2.2 
 
1. D’Alembert’s Solution of the Wave Equation 
 
In the wave equation 2.2.3, change variables through  
 

,x ct x ct                                               (2.2.50) 
 

Then     , , ,u u x t x t   and the chain rule gives 

 
u u u u u
x x x

 
   

      
   

      
                                    (2.2.51) 

 
and similarly for the variable t.  Another differentiation gives 
 

2 2 2 2

2 2 2
2

u u u u u u
x x x x x

 
     

                                
               (2.2.52) 

 
and similarly for the variable t.  Substituting these expression into the wave equation 
2.2.3 leads to 
 

2

4 0
u

 



 

                                                    (2.2.53) 

 
Integrating with respect to   gives  /u       where     is some arbitrary 

function.  A further integration then gives        u d f f g         , which is 

D’Alembert’s solution, Eqn. 2.2.20: 
 

   ctxgctxftxu ),(                                      (2.2.54) 
 
Let the initial conditions be 
 

( ,0)

( ,0) ( )

( )
x

u x U x
u V x
t







                                                  (2.2.55) 

 
Thus, from 2.2.54, 
 

   ( )U x f x g x  .                                           (2.2.56) 

 
Now 
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     , ,f x t g x tu df dg df dgc c
t t t d t d t d d

   
   

   
      

    
          (2.2.57) 

 
At 0t  ,    f f x   and    g g x  , so 

 

( ,0)

( ) ( )
( )

x

u df x dg xV x c c
t dx dx


   


                                   (2.2.58) 

 
Integrating then gives 

 

0 0 0

0 0 0 0

1 ( ) ( )
( ) ( ) ( ) ( ), ( ) ( ) ( )

x x x

x x x

df dgV d d d g x f x x x f x g x
c d d

      
 

                                 

(2.2.59) 
 
Subtracting this from Eqn. 2.2.56, and also adding it to Eqn. 2.2.56, gives 
 

0

0

0

0

1 1 1
( ) ( ) ( ) ( )

2 2 2

1 1 1
( ) ( ) ( ) ( )

2 2 2

x

x

x

x

f x U x V d x
c

g x U x V d x
c

  

  

  

  




                                   (2.2.60) 

 
If one now replaces x with x ct  in the first of these, and with x ct  in the latter, 
addition of the two expressions leads to Eqn. 2.2.22: 
 

   1 1
( , ) ( )

2 2

x ct

x ct

u x t U x ct U x ct V d
c

 




                         (2.2.61) 

 
 

2. Method of Separation of Variables Solution to the Wave Equation 
 
Assuming a separable solution, write )()(),( tTxXtxu   so that )()(/ 22 tTxXtu   and 

)()(/ 22 tTxXxu  .  Inserting these into the wave equation gives 
 

dX
Xd

Xdt
Td

Tc

T
dX

Xdc
dt

TdX
2

2

2

2

2
2

2

2

111



          (2.2.62) 

 
This relation states that a function of t equals a function of x and it must hold for all t and 
x.  It follows that both sides of this expression must be equal to a constant, say k (if the 
left hand side were not constant it would change in value as t is changed, but then the 
equality would no longer hold because the right hand side does not change when t is 
changed – it is a function of x only).  Thus there are two second order ordinary 
differential equations: 



Section 2.2 

Solid Mechanics Part II                                                                                Kelly 43

 

 0,0 2
2

2

2

2

 kTc
dt

TdkX
dx

Xd
   (2.2.63) 

 
which have solutions 
 

tkctkcxkxk DeCeTBeAeX   ,0      (2.2.64) 
 
 
Modes and Natural Frequencies for Homogeneous Boundary Conditions 
 
Suppose first that k is positive.  Consider homogeneous boundary conditions, that is, 

0u  and/or 0/  xu  at the end points Lx ,0 .  Suppose first that 0),0( tu .  Then 
0)0(0)()0(),0(  XtTXtu  and so 0 BA .  If also 0),( tLu , then 

0  LkLk BeAe  which implies that 0 BA , and 0),( txu .  Similarly, if one uses 
the conditions 0),0(/  txu  or 0),(/  tLxu , or a combination of zero u and first 
derivative, one arrives at the same conclusion: a trivial zero solution.  Therefore, to obtain 
a non-zero solution, one must have k negative, and  
 

)sin()cos()( xBxAxX   , 2k                        (2.2.65) 
 
The solution for )(tT  must then be 
 

)sin()cos()( ctDctCtT                                   (2.2.66) 
 
and the full solution is 
 

         ctDctCxBxAtxu  sincossincos),(                 (2.2.67) 
 
There are four possible combinations of boundary conditions. 
 
1. Fixed-Fixed 
 
Here, 0),(),0(  tLutu .  Thus 0)0(  AX

 
and 0)sin()(  LBLX  .  For non-zero 

B  one must have ,1,0,/0)sin(  nLnL  .  Thus one has the infinite 

number of solutions )sin()( xBxX nnn  , and the complete general solution is 

( DBBCBA  , )6 
 

 





1

)sin()sin()cos(),(
n

nnnnn xctBctAtxu                   (2.2.68) 

 
with 

                                                 
6 the solutions corresponding to negative values of n, i.e. ,2,1,/  nLn , can be subsumed into 

2.2.68 through the constants nn BA , ; the solution for 0n  is zero  
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 Frequencies: ,2,1,  n
L

cncnn
        Modes:   ,2,1,sin nxn  

(2.2.69) 
 
It can be proved that the series 2.2.68 converges and that it is indeed a solution of the 
wave equation, provided some fairly weak conditions are fulfilled (see a text on 
Advanced Calculus). 
 
The first three modes are plotted in Fig. 2.2.10. 
 

 
 

Figure 2.2.10: first three mode shapes for fixed-fixed 
 
 
Case 2. Free-Free 
 
Here, 0),(/),0(/  tLxutxu .  Thus 0)0(  BX   and 

0)sin()(  LALX  .  Thus the general solution is ( DABCAA  , ) 
 

 





1

0 )cos()sin()cos(),(
n

nnnnn xctBctAAtxu                    (2.2.70) 

 
with the n  as for fixed-fixed. 

 

Frequencies: ,2,1,  n
L

cncnn
           Modes:   ,2,1,cos nxn  

(2.2.71) 
 

The displacement profiles of the first three modes are shown in Fig. 2.2.11. 
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Figure 2.2.11: first three mode shapes for free-free 
 
 
Case 3. Fixed-Free 
 
Here, 0),(/),0(  tLxutu .  Thus 0)0(  AX  and 0)cos()(  LBLX  .  For 

non-zero B  one must have  ,2,1,0,1,2,2/)12(0)cos(  nLnL  .  
The solution is again given by 2.2.68, which is repeated here, 
 

 





1

)sin()sin()cos(),(
n

nnnnn xctBctAtxu                   (2.2.72) 

 
only now  
 

    Frequencies: ,2,1,
2

)12(



 n

L
cncnn
           Modes:   ,2,1,sin nxn  

(2.2.73) 
 
The displacement profiles of the first three modes are shown in Fig. 2.2.12. 
 

 
 

Figure 2.2.12: first three mode shapes for fixed-free 
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Case 4. Free-Fixed 
 
Here, 0),(),0(/  tLutxu .  Thus 0)0(  BX   and 0)cos()(  LALX  .  For 

non-zero A  one must have 0)cos( L so the general solution is as for free-free, Eqn. 

2.2.70, but with 00 A : 

 

 





1

)cos()sin()cos(),(
n

nnnnn xctBctAtxu                    (2.2.74) 

 
with the n  as for fixed-free. 

 

      Frequencies: ,2,1,
2

)12(



 n

L
cncnn
           Modes:   ,2,1,cos nxn  

(2.2.75) 
 
The displacement profiles of the first three modes are shown in Fig. 2.2.13. 
 

 
 

Figure 2.2.13: first three mode shapes for free-fixed 
 
 
Full Solution (incorporating Initial Conditions) 
 
(a) Initial Condition on Displacement 
 
The initial condition on displacement is 
 

)()0,( 0 xuxu                                                  (2.2.76) 

 
which give, from 2.2.68, 2.2.70, 2.2.72, 2.2.74, 
 

)()sin()0,( 0
1

xuxAxu
n

nn  




   fixed-fixed/fixed-free 

)()cos()0,( 0
1

0 xuxAAxu
n

nn  




   free-free                                  (2.2.77) 
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)()cos()0,( 0
1

xuxAxu
n

nn  




   free-fixed 

 
These can be solved by using the orthogonality condition of the trigonometric functions: 
 








  nmL
nm

dxxxdxxx
L

mn

L

mn ,2/

,0
)cos()cos()sin()sin(

00
         (2.2.78) 

 
for either of LnLnn 2/)12(,/   .  Thus multiplying both sides of 2.2.77a by 

)sin( xm  and 2.2.77b-c by )cos( xm  and integrating over  L,0  gives 

 

dxxxu
L

A n

L

n )sin()(
2

0

0       fixed-fixed/fixed-free 

,2,1,)cos()(
2

,)(
1

0

0

0

00   ndxxxu
L

Adxxu
L

A n

L

n

L

  free-free          (2.2.79) 

dxxxu
L

A n

L

n )cos()(
2

0

0       free-fixed 

 
(b) Initial Condition on Velocity 
 
The initial condition on velocity,   )(0, 0 xvxu  , gives 

 

)()sin()0,( 0
1

xvxcBxu
n

nnn  




  fixed-fixed/fixed-free 

)()cos()0,( 0
1

xvxcBxu
n

nnn  




  free-fixed/free-free                            (2.2.80) 

 
Using the orthogonality conditions again gives 
 

dxxxv
Lc

B n

L

n
n )sin()(

2

0

0 
   fixed-fixed/fixed-free 

dxxxv
Lc

B n

L

n
n )cos()(

2

0

0 
   free-fixed/free-free                           (2.2.81) 

 
Example 
 
Consider the fixed-free case with initial conditions Lxxvxu /2)(,0)( 00  .  Thus 

0nA  and  
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c
L

n

n
L

Lcn
dxx

L
nx

Lcn
B

n

nL

n

33

1

22

12

0

)12(

)1(32

)12(

)1(4

)12(

8

2

)12(
sin

)12(

8
























 









 

 
so that 
 

,2,1,
2

)12(
),sin()sin(

)12(

)1(32
),(

1
3

1

3








 






n
L

cncctx
nc

Ltxu nnn
n

n

n 


 

 
The period for the first (dominant) mode is cLcT /4/2 11   .  The solution is plotted 

in Fig. 2.2.14 for m/s5000c , m1.0L , for the five times 40,16/1 iiT  (up to the 
quarter-period).  Thereafter, the solution decreases back to zero, down through negative 
displacements, back to zero and then repeats. 
 
 

 
 

Figure 2.2.14: displacements for fixed-free example 
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Example 
 
Consider the free-free case with initial conditions 0)(,)( 00  xvxuxu .  Thus 0nB  

and  
 

   ,2,1,11
2

cos
2

2

22
0

0

0















n
n
Ludx

L
xnx

L
uA

Ludxx
L
uA

n
L

n

L




 

 
so that 

  
L

nxct
n

Lutxu n
n

nn

n 









 
 





,)cos()cos(
112

2

1
),(

1
22

                  (2.2.34) 

 
The period for the first (dominant) mode is cLcT /2/2 11   .  The solution is plotted 

in Fig. 2.2.15 again for m/s5000c , m1.0L , for the nine times 80,16/1 iiT  (up 
to the half-period).  Thereafter, the solution returns back to the initial position and then 
repeats. 
 

 
 

Figure 2.2.15: displacements for free-free example 
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