2 One-Dimensional
Elasticity

There are two types of one-dimensional problems, the elastostatic problem and the
elastodynamic problem. The elastostatic problem gives rise to a second order
differential equation in displacement which may be solved using elementary
integration. The elastodynamic problem gives rise to the one-dimensional wave

equation, whose solution predicts the propagation of stress waves and vibrations of
material particles

19



20



Section 2.1

2.1 One-dimensional Elastostatics

Consider a bar or rod made of linearly elastic material subjected to some load. Static
problems will be considered here, by which is meant it is not necessary to know how the
load was applied, or how the material particles moved to reach the stressed state; it is
necessary only that the load was applied slowly enough so that the accelerations are zero,
or that it was applied sufficiently long ago that any vibrations have died away and
movement has ceased.

The equations governing the static response of the rod are:

?j—a+b =0 Equation of Equilibrium (2.1.1a)
X
£= c(j_u Strain-Displacement Relation (2.1.1b)
X
o=Ee¢ Constitutive Equation (2.1.1c)

where E is the Young’s modulus, p is the density and b is a body force (per unit
volume). The unknowns of the problem are the stress o, strain & and displacement u.

These equations can be combined to give a second order differential equation in u, called
Navier’s Equation:

d?u
dx?

+% =0 1-D Navier’s Equation  (2.1.2)

One requires two boundary conditions to obtain a solution. Let the length of the rod be
L and the x axis be positioned as in Fig. 2.1.1. The possible boundary conditions are then

1. displacement specified at both ends (“fixed-fixed”)
u(0) =0, u(b)=u,

stress specified at both ends (“free-free”)
o(0)=0,, o(l)=0,

displacement specified at left-end, stress specified at right-end (“fixed-free”):
u@0)=u,, o(L)=0o,

stress specified at left-end, displacement specified at right-end (“free-fixed”):
o(0) =0y, u(b)=u,

o

w

>

L

Figure 2.1.1: an elastic rod
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Note that, from 2.1.1b-c, a stress boundary condition is a condition on the first derivative
of u.

Example

Consider a rod in the absence of any body forces subjected to an applied stress o, Fig.

o, <—€> >_’ O,

Figure 2.1.2: an elastic rod subjected to stress

The equation to solve is

du
=0 2.1.3
dx? 213)
subject to the boundary conditions
o _g M (2.1.4)
dx|,, E' dx|_, E

Integrating twice and applying the conditions gives the solution
u=%x+B (2.1.5)

The stress is thus a constant o, and the strainis o,/ E . There is still an arbitrary

constant B and this physically represents a possible rigid body translation of the rod. To
remove this arbitrariness, one must specify the displacement at some point in the rod. For
example, if u(L/2) =0, the complete solution is

u=—°(x—£j, 6‘:&, o=0 (2.1.6)

2.1.1 Problems

1. What are the displacements of material particles in an elastic bar of length L and
density o which hangs from a ceiling (see Fig. 1.1.2).

2. Consider a steel rod (E = 210 GPa, p =7.85 g/cm?®) of length 30 cm, fixed at one

end and subjected to a displacement u = 1mmat the other. Solve for the stress, strain
and displacement for the case of gravity acting along the rod. What is the solution in
the absence of gravity. How significant is the effect of gravity on the stress?
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2.2 One-dimensional Elastodynamics

In rigid body dynamics, it is assumed that when a force is applied to one point of an
object, every other point in the object is set in motion simultaneously. On the other hand,
in static elasticity, it is assumed that the object is at rest and is in equilibrium under the
action of the applied forces; the material may well have undergone considerable changes
in deformation when first struck, but one is only concerned with the final static
equilibrium state of the object.

Elastostatics and rigid body dynamics are sufficiently accurate for many problems but
when one is considering the effects of forces which are applied rapidly, or for very short
periods of time, the effects must be considered in terms of the propagation of stress
waves.

The analysis presented below is for one-dimensional deformations. Inherent are the
assumptions that (1) material properties are uniform over a plane perpendicular to the
longitudinal direction, (2) plane sections remain plane and perpendicular to the
longitudinal direction and (3) there is no transverse displacement.

2.2.1 The Wave Equation

Consider now the dynamic problem. In this case U =Uu(X,t) and one considers the
governing equations:

aa—a +b=pa Equation of Motion (2.2.1a)
X
&= g_u Strain-Displacement Relation (2.2.1b)
X
o=Ee Constitutive Equation (2.2.1c¢)

where a is the acceleration. Expressing the acceleration in terms of the displacement, one
then obtains the dynamic version of Navier’s equation,

2 2
8u+b:pau

E
ox? ot?

1-D Navier’s Equation (2.2.2)

In most situations, the body forces will be negligible, and so consider the partial
differential equation

2 1 2 )
lej = el gtl; 1-D Wave Equation (2.2.3)

c= \/E (2.2.4)
o,
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Equation 2.2.3 is the standard one-dimensional wave equation with wave speed C; note
from 2.2.4 that ¢ has dimensions of velocity.

The solution to 2.2.3 (see below) shows that a stress wave travels at speed c through the
material from the point of disturbance, e.g. applied load. When the stress wave reaches a
given material particle, the particle vibrates about an equilibrium position, Fig. 2.2.1.
Since the material is elastic, no energy is lost, and the solution predicts that the particle
will vibrate indefinitely, without damping or decay, unless that energy is transferred to a
neighbouring particle.

vibration of
stressed particle

stress wave stress free
at speed C

Figure 2.2.1: stress wave travelling at speed ¢ through an elastic rod

This type of wave, where the disturbance (particle vibration) is in the same direction as
the direction of wave propagation, is called a longitudinal wave.

The wave equation is solved subject to the initial conditions and boundary conditions.
The initial conditions are that the displacement U and the particle velocity ou /ot are
specified at t =0 (for all X). The boundary conditions are that the displacement U and the
first derivative ou/ox are specified (for all t). This latter derivative is the strain, which
is proportional to the stress (see Eqn. 2.2.1b). In problems where there is no boundary (an
infinite medium), no boundary conditions are explicitly applied. A semi-infinite medium
will have one boundary. For a rod of finite length, there will be two boundaries and a
boundary condition will be applied to each boundary.

2.2.2 Particle Velocities and Wave Speed
Before examining the wave equation 2.2.3 directly, first re-express it as

oo ov
—=p— 2.2.5
OX p ot ( )

where V is the velocity. Consider an element of material which has just been reached by
the stress wave, Fig. 2.2.2. The length of material passed by the stress wave in a time
interval At is CAt. During this time interval, the stressed material at the left-hand side of
the element moves at (average) velocity vV and so moves an amount VAt. The strain of the
element is then the change in length divided by the original length:

\Y

= (2.2.6)

Solid Mechanics Part 11 24 Kelly



Section 2.2

Under the small strain assumption, this implies that v << ¢ .

Let the stress acting on the element be Ao ; the stress on the free side of the element is
zero. Then 2.2.5 leads to

Ao v
—=p— 2.2.7
CAt p At ( )
and so
Ao = pcv (2.2.8)

This is the discontinuity in stress across the wave front.

wave front CAL
X <>
attimet ~— ——— |
VAL \
<> |
Ao €+
wave front .

at time t + At

Figure 2.2.2: stress wave passing through a material element

Since Ao = E¢,onehas c=,/E/p,asin2.2.4. The wave speeds for some materials

are given in Table 2.2.1. As can be seen, the wave speeds for typical engineering
materials are of the order km/s and so particle velocities will be in the range 0 —50m/s .

Material P (kg/m3 ) E (GPa) o (m/ s)
Aluminium Alloy 2700 70 5092
Brass 8300 95 3383
Copper 8500 114 3662
Lead 11300 17.5 1244
Steel 7800 210 5189
Glass 1870 55 5300
Granite 2700 26 3120
Limestone 2600 63 4920
Perspex 490 2.5 2260

Table 2.2.1: Elastic Wave Speeds for Several Materials

" note also that the density of the element will change as it is compressed, but again this change in density is
small and can be neglected in the linear elastic theory
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Consider steel: the velocity at which the material ceases to behave linearly elastic (taking
the yield stress to be 400MPa) is v=Y / pCc = 10m/s.

2.2.3 Waves

Before proceeding, it will be helpful to review and summarise the important facts and
terminology regarding waves.

Suppose that there is a displacement u which is propagated along the X axis at velocity C.
At time t =0 say, the disturbance will have some wave profile u= f(x). Ifthe

disturbance propagates without change of shape, then at some later time t the profile will
look identical but it will have moved a distance ct in the positive direction. If we take a
new origin at the point X =ct and let the distance measured from this origin be X, then
the equation of the new wave profile referred to this new origin would be u = f(X).

Referred to the original fixed origin, then,
u=f(x-ct). (2.2.9)

This is the most general expression for a wave travelling at constant velocity ¢ and
without change of shape, along the positive X axis. If the wave is travelling in the

negative direction, then its form would be u = f (x+ct).

The simplest type of wave of this kind is the harmonic wave, in which the wave profile
is a sine or cosine curve. If the wave profile at time t =0 is u=acos(kx), then at time t

the profile is
u=acos[k(x—ct)]. (2.2.10)

The maximum value of the disturbance, a, is called the amplitude. The wave profile
repeats itself at regular distances 27 /k , which is called the wavelength 4. The
parameter K is called the wave numberz; since there is one wave in A units of distance, it
is the number of waves in 27 units of distance:

k=="-. 2.2.11
7 ( )

The distance travelled by the wave in time tis ct. The time taken for one complete wave
to pass any point is called the period T, which is the time taken to travel one wavelength:

T=

A (2.2.12)
C

The frequency f is the number of waves passing a fixed point in unit time, so

* more specifically, this is the angular wavenumber, to distinguish it from the (spectroscopic)
wavenumber 1/ 4
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f =

1 ¢
—=— 2.2.13
T A ( )

The angular frequency is @ =2zf =kc.

As the wave travels along, the particle at any fixed point displaces back and forth about
some equilibrium position; the particle is said to vibrate. The period and frequency were
defined above in terms of the time taken for a wave to travel along the X axis. It can be
seen that the period T is also equivalent to the time taken for a particle to displace away
and then back to its original position, then off in the other direction and back again; the
frequency f can also be seen to be equivalent to the number of times the particle vibrates
about its equilibrium position in unit time.

The wave 2.2.10 can be expressed in the equivalent forms:
u= acos[k (x— Ct):|

_27Z'
= ZZ(x—ct
u acos_ /1 (x—c )}

[ (x ot

u=acos _27[(;—?H (2.2.14)

U =acos 27r1—a)tj
A

u=acos(kx—at)

If one has two waves, U, =acos(kx—wt) and u, =acos(kx—at + ¢), then the waves are
the same except they are displaced relative to each other by an amount ¢/ Kk =¢1 /27 ; ¢
is called the phase of u, relative to u,. If ¢ is a multiple of 27, then the displaced
distance is a multiple of the wavelength, and the waves are said to be in phase.

It can be verified by substitution that the wave 2.2.14 is a solution of the wave equation
2.23.

Example

Fig. 2.2.3 shows a wave travelling through steel and vibrating at frequency f =1kHz.
Using the data in Table 2.2.1, the wave number is kK =27 f /c~1.21 and the wavelength
is A=c/f ~5.2. The periodis T =1/1000 sec . For unit amplitude, a =1, the wave
profiles are shown for t =0 (blue) and t=1/1500 sec (=4T) (red). The dashed arrows
show the movement of one particle as the wave passes.
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1

0.8

0.6

acos[k (x— Ct)] 0.l
0.2

[o;

-0.2r
-0.4r
-0.6%
-0.8r\

\ / . A\ /
1 o | AN

0 10 12

Figure 2.2.3: harmonic wave (Eqn. 2.2.10) travelling through steel at 1 kHz; a=1
with t =0 (blue) and t =1/1500 (red)

Standing Waves

Because the wave equation is linear, any linear combination of waves is also a solution.
In particular, consider two waves which are similar, only travelling in opposite directions;
the superposition of these waves is the new wave

u=acos(kx—at)+acos(kx+ wt)

= 2acos(kx)cos(at) @215
It will be seen that this wave profile does not move forward, and is therefore called a
standing wave (to distinguish it from the progressive waves considered earlier). An
example is shown in Fig. 2.2.4 (same parameters as for Fig. 2.2.3); at any fixed point, the
wave moves up and down over time. The period is again T =1/1000 sec. Shown is the
wave at five instants, from t =0 up to just short of the half-period.

Note that u=0 for x=+(2n+1)7/2k, n=0,1,2,...; these are called the nodes of the

wave. The intermediate points, where the amplitude is greatest, are called antinodes.
The distance between successive nodes (or antinodes) is half the wavelength.
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Figure 2.2.4: standing wave (Eqn. 2.2.15) in steel at 1 kHz; with a=1at t=0
(black), t=0.0001 (red), t=0.0002 (green dashed), t =0.0003 (blue dotted) and
t=0.0004 (red dotted)

If the wave is not harmonic, one can use a Fourier analysis (see below) to construct the
wave out of a sum of individual harmonic waves; if the profile consists of a regularly
repeating pattern, the definitions of wavelength, period, frequency and wave number, and
the relations between them, Eqns. 2.2.11-13, still apply.
Complex Exponential Representation
When dealing with progressive waves of harmonic type, it is usually best to represent the
wave using a complex exponential function. The reason for this is that exponentials are
algebraically simpler than harmonic functions, and also the amplitude and phase are
represented by one complex quantity rather than by two separate terms (as will be seen
below).

The general wave of the form
u=acos(kx—at+¢) (2.2.16)
is the real part of the complex exponential
ae"* ) = a cos (kx — at + ¢) +isin (kx — et + ¢) | (2.2.17)
The phase shift and amplitude can be absorbed into a new constant A:
u=Ae'®™ M  A=ae" (2.2.18)

It can be verified that this complex quantity is itself a solution of the wave equation, Eqn.
2.2.3 (and if a complex quantity is a solution, so are its real and imaginary parts). One
can carry out analyses using the complex expression 2.2.18, keeping in mind that the
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“real” solution, Eqn. 2.2.16, is the real part of this expression. Since ‘ei(kx_"’t) =1, the true

amplitude is |A| . The true phase shift ¢ is the argument of A, arg A.

Eqn. 2.2.16 is a wave travelling to the “right”. It has been seen how a wave travelling to
the right is of the form u = acos(kx + a)t), suggesting a complex representation

u=Ae' ™ However, this is not an ideal representation, because the difference
between a wave travelling left or right, i.e. the difference between this expression and the
one in Eqn. 2.2.17, is given by the sign of the frequency. This can make it difficult to
solve problems involving reflecting waves® (see below), and therefore it is best to use the
following representations when adding and subtracting waves:

Travelling right: Ae™**~" (2.2.19a)
Travelling left: Ae (2.2.19b)

(Note: another popular convention is to use Ae" ™ for right and Ae"' ™V for left.)

2.2.4 Solution of the Wave Equation (D’Alembert’s Solution)

The one-dimensional wave equation 2.2.3 has the very general solution (this is
D’Alembert’s solution — see the Appendix to this section for its derivation)

u(x,t) = f(x—ct)+ g(x +ct) (2.2.20)

where f and g are any functions4; for example, one solutionis f =e**, g = sin(X + Ct) ,

which can be verified by substitution and carrying out the differentiation. The harmonic
waves considered above are special cases of this solution, in which f and g are cosine
functions. The actual forms of the functions f and g can be determined from the initial
conditions of the problem, which are the initial displacement profile u(x,0) and the

initial velocity V(X, 0) =ou/ 8t| Consider the arbitrary initial conditions

(x,0) "

u(x,0)=U(x)

(2.2.21)
V(X,0) =V (X)
Then, as shown in the Appendix to this section, the solution is
u(x,t) = l[u (x+ct)+U (x—ct)] +ixrv (a)da (2.2.22)
2 2¢

x—ct

3 for example, when a wave hits a boundary and gets reflected, this representation would force the incident
and reflected waves to have different frequencies, when in fact a solution in which the frequencies are the
same is often sought

* provided they possess second derivatives
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Example

Suppose for example that the initial displacement profile was triangular, with maximum
displacement U =U at X =0, extending to X =L, Fig. 2.2.5.

u(x,O)T /\ r

»

\
\
u==0

Figure 2.2.5: an initial triangular displacement

c
Il
S

The initial conditions are

0, x|~ L
U(X)=u(x,0)=<T(+x/L), -L<x<0
u(l-x/L), 0<x<+L

and V(x) =0. D’Alembert’s solution is then
u(x,t) =4U(x—ct) +U(x+ct)]

The solution predicts that at time 2L /c there are two triangular displacement profiles of
half the magnitude of the original profile; one is to the left and the other is to the right of
the original profile, Fig. 2.2.6.

/ / \\ \ \
/ x=0 \
Xx=-2L (u=0) w=oL

Figure 2.2.6: displacements at time 2L/c

As the wave passes, particles displace from their equilibrium point, up to the maximum
position and then back again. It can be seen that the solution corresponds to a wave of
disturbed material propagating through the material from the source, half in one direction
and half in the other.
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2.2.5 Reflection and Transmission

Let a train of harmonic waves travel from the negative X direction in a material with
material properties E,, p,. The waves then meet a second material with different material

properties E,, p,, at the origin X=0. Let the displacements in the first material be u,
and those in the second, U,. As will be seen, the incident wave upon the second material

will suffer partial reflection and partial transmission. Using the complex exponential
representation, Eqn. 2.2.19, and superscripts “i” for incident, “r” for reflected and “t” for
transmitted:

u=u”+u®, u,=u® (2.2.23)
with
u(i) — Aei(klx—a)t), u(r) — Ae—i(klxwut), u(t) — Aei(kzx—a)t) (2.2‘24)

A is real, but in general B,, A, could be complex. The wave speeds C in each material

will be different (if the material properties are different). The frequencies of all three
waves are the same — since the material is connected to adjacent material, it must all be
vibrating at the same frequency. It follows that the wavenumbers Kk differ also:

K _ B (2.2.25)

k.c =k,c or —L
H 2 kZ E;/)Z

The boundary conditions at the material interface are that

u,(0,t) =u,(0,t)

gl g dn
OX OX

(2.2.26)

(0,t) (0,t)

The first of these says that the material remains continuous at the interface. The second
says that the stress is also continuous there (see Eqns. 2.2.1b-c). Applying these to Eqn.
2.2.23 gives

+ =
ATA=A (2.2.27)
AElkl - A%E1k1 = A\Ezkz
so that
l-¢ 2
=A—>-, =A— 2.2.28
A=A o A=A o ( )
where
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o=l _Gp B (2.2.29)
Ek,  cp =2

Note that, since A is real, so also are A, A.

The stresses are given by

. -1 .
G(r):_ﬁo.m:(” oM

A 1 o :ﬁ E.k, o = 2¢ o (2.2.30)
Q-+

A EK ¢+1

2

The parameter ¢ determines the nature of the reflected and transmitted waves, and is the
ratio of the quantities pc of each material; this quantity pc is often referred to as the
mechanical impedance of the rod. Note that the stiffness E and density p are
independent, so if E, > E,, this does not imply that p, > p, or that ¢ >1 (see Table
2.2.1).

When ¢ > 1, the reflected wave has opposite sign to that of the incident wave and has a
smaller amplitude. The transmitted wave is of the same sign and is also smaller. In the
limit as ¢ — o, which would represent a perfectly rigid material 2 (E, — o), there is no
transmitted wave and the reflected wave has amplitude A =—A . The stress at the
boundary is twice the stress due to the incident wave alone.

When ¢ <1, the reflected wave has the same sign to that of the incident wave and has a

smaller amplitude. The transmitted wave is of the same sign and is larger. In the limit as
@ — 0, which would represent “empty” material 2, the reflected wave is equal to the

incident wave. The stress at the boundary is zero — this is called a “free boundary” (see
below).

Examples of harmonic waves travelling through steel and granite are shown in Fig. 2.2.7.
The frequency of vibration is taken to be f =1kHz. Using the data in Table 2.2.1, the

wave numbers are K, =27f /¢, ~1.21 and k; =27 f /¢, ~2.01. The wavelengths of
the waves are A, =c,/ f =52 and 4, =c,/ f =3.1. The incident wave is taken to have
unit amplitude. When the wave travels from steel into granite, ¢ =0.207 and when it
travels from granite into steel it is the inverse of this, ¢ =4.83. The interference between

the incident and reflected waves produce a new wave in material “1” (denoted by the
green plots in Fig. 2.2.7):

u, :a{cos(kx—a)t)+ 1;¢cos(kx+a)t)} (2.2.31)
®

Note that A = A at time t =0 (full reflected and transmitted wave profiles are plotted at

time zero, even though there is no actual wave present right through the material yet at
this time).
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Figure 2.2.7: reflection and transmission of harmonic waves at the boundary
between steel and granite; at time t =0 (solid) and time t=1/1500 (dashed);
incident (black), reflected (blue), transmitted (red) and composite wave in material

“1” (green)
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2.2.6 Energy in Vibrating Bars

The kinetic energy in an element of length dx of the bar is dK =< Ap(du/ 6t)2 dx , where

A is the cross-sectional area. The total kinetic energy in a bar of length L is then
1 ‘ 2
K= pA| (6u/at)dx, (2.2.32)
0

The potential energy is the elastic strain energy; for a small element of length dx this is
dW =1oeAdx, so

L
W :%AE [[(auraxydx, (2.2.33)
0

2.2.7 Solution of the Wave Equation (Standing Waves)

D’Alembert’s solution gives results for progressive waves travelling in an infinitely
extended medium. Standing waves in an infinite medium can also be a solution. For

example if one has the initial profile U(x) = acos(kx) and zero initial velocity,
V(X)=0, one gets from Eqn. 2.2.22 the standing wave 2.2.15.

Standing waves can be generated more generally by using a separation of variables
solution procedure for Eqn. 2.2.3. Using this method, detailed in the Appendix to this
section, one has the general solution

u(x,t) = i(ﬁh cosk X+ B, sin knx)((fn cosck t+ D, sin Cknt) (2.2.34)

n=l1

The (infinite number of) constants A, B, C, D and eigenvalues’ k can be obtained from

the initial and boundary conditions (see later). What are termed “eigenvalues” in this
context can be seen to be the wave number.

The terms cosk,x and sink X are called modes or mode shapes. At any given time t,

the displacement is a linear combination of these modes. Example modes are shown in
Fig. 2.2.8. Some modes will dominate over others, for example perhaps only the first few
modes (terms in the series 2.2.34) are significant and need be considered.

> note that some authors use the term “eigenvalue” to mean the quantity (Ckn) in this expression
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1* mode 3" mode

0.5

0 0.2

Figure 2.2.8: mode shapes for a vibrating elastic rod

Natural Frequencies

The eigenvalues (or, equivalently, the natural frequencies @ = ck ) depend on the
boundary conditions. There are four possible cases for the one-dimensional rod. Taking
the bar to have end-points x =0, L, the boundary conditions are (these are the same as for

the static elasticity problem):

1. fixed-fixed - u(0,t)=0, u(L,t)=0

2. free-free - au/8x|(0’t) =0, 8u/ax|(u) =0

3. fixed-free - u(0,t)=0, ou/ox| =0 (2.2.35)
4. free-fixed - ou/ox|, =0, u(L,t)=0

(0,t)

The natural frequencies and modes for each of these boundary conditions are solved for
and given in the Appendix to this section (in the boxes). For example, considering the
“fixed-fixed” case, the solution is

u(x,t) = i[ﬁh cos(k,ct) + B, sin(k,ct)]sin(k,X) (2.2.36)
with

. nzCc
Frequencies: @, =k.C= " n=0,1,...

Modes: sin(k,x), n=0,L... (2.2.37)

One can plot these sine functions over [0, L] to see the displacement profile of each mode

(the first three are those plotted in Fig. 2.2.8 — it can be seen that the higher the mode, the
higher the frequency).

The complete solution and precise profile is then obtained by applying the initial
conditions of the problem to determine the coefficients A, B, in Eqn. 2.2.36. Some

examples of this complete calculation are given in the Appendix.
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Vibration Analysis

A vibration analysis is one in which the eigenvalues (natural frequencies) and modes are
evaluated without regard to which of them might be important in an application. The
boundary conditions alone determine the modes and natural frequencies. Thus a
vibration analysis is carried out without regard to how the vibration is initiated. The
exact combination of the modes for a particular problem is determined from the initial
conditions; the initial conditions will determine the arbitrary constants in the above
equations and hence the actual amplitude of vibration.

The vibration is termed free if the load is zero or constant; forced vibration occurs when
the load itself oscillates.

Even though a vibration analysis does not completely solve the problem of a material
model loaded in a certain way, for example solving for the propagation paths of stress
waves, the amplitudes of vibration, and so on, the natural frequencies and modes are very
useful information in themselves, for design and other purposes.

Dynamic response analysis or transient response analysis is the calculation of the
complete response to any arbitrary boundary and initial conditions. This is more difficult
than the vibration analysis, since it is a time-dependent problem.

Non-Homogeneous Boundary Conditions

The boundary conditions in 2.2.35 are all homogeneous (i.e. u=0 or du/ox=0). In
practice, the boundary conditions will not be homogeneous, but the natural frequencies do
not depend on whether the boundary conditions are homogeneous or non-homogeneous.
In other words, if one wants to determine the natural frequencies, one needs only consider
the case of homogeneous boundary conditions, as will be seen now.

Consider the following non-homogeneous boundary conditions:

BC’s: u(0,t)=0, u(L,t)=0 (2.2.38)

Since the wave equation is linear, the solution can be written as the superposition of two
separate solutions,

u(x,t) =u, (Xt +u,(x1) (2.2.39)

The u,, is the homogeneous solution, and is chosen to satisfy the wave equation with
homogeneous boundary conditions; U, is some particular solution and accounts for the

non-homogeneous boundary condition:

BC’s:  u,(0,H)=0, u,(Lt)=0
u,(O,t)=0, u,(Lt)=0 (2.2.40)

Substituting 2.2.39 into the wave equation 2.2.3 gives
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2 2 2 2
o', _10°, _ [0, 107U, (2.2.41)
x ¢ ot x ¢ o

The left hand side is zero. The right hand side can be made zero by choosing U, to be

any particular solution of the wave equation. For a simple constant displacement
boundary condition, one can choose the linear function

U, (X) = 0(1 —%] (2.2.42)

which can be seen to satisfy 2.2.40b. The complete solution u is illustrated in Fig. 2.2.9.

u(x,0)
a U, (X)

Figure 2.2.9: displacements as a superposition of two separate solutions

Suppose now that the initial conditions are

o, MO =T (2.2.43)
V(X,0) = V(X)

The initial conditions can be split between U, and U, according to

Up (%,0) =U(X)—u,(x), U, (X,0)=u,(x)
Vi (X,0) =V(X) =V, (X), V,(X,0)=V,(X)

SQ.

(2.2.44)

Thus, the complete solution is obtained by adding together:

(1) the function u, which satisfies the wave equation with homogeneous boundary

conditions on displacement, and initial conditions
U, (X,0) =U(x)—u,(x)

Vi (X,0) = V(X) =V, (X)

up(x)=a(1—8

Thus, using the “fixed-fixed” homogeneous solution from the Appendix,

1C’s

(i1) the function
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u(x,t)y=ad [1 -~ EJ + i[ﬂ cos(k,ct) + B, sin(k,ct)]sin(k,X) (2.2.45)

n=0

and the natural frequencies are given by 2.2.37. The constants A,, B, can be obtained
from the initial conditions, as outlined in the Appendix.

The important point to be made here is that the modes and natural frequencies are
determined from (i), i.e. the problem involving the homogeneous boundary conditions,
and so, as stated above, the non-homogeneous boundary condition does not affect the
modes and natural frequencies.

Forced Vibration
Suppose now that the boundary conditions and initial conditions are given by

, u@O,t)= a cos(Qt)

. u(x,0)=dcos(xz/2L)
S: .
u(L,t)=0

00 (2.2.46)

Again, let u(x,t) =u (X, t)+ U, (X,t) and substitute into the wave equation. In this case,
the particular solution will be of the general form 2.2.34,

u, = (Acoskx + Bsinkx)(C cosckt + Dsin ckt) (2.2.47)

Applying the boundary conditions, one finds that { A Problem 1}

u,(x,t)= a{cos(%] - cot(%) sin(%)} cos(Qt) (2.2.48)

As with the constant non-homogeneous boundary condition, the initial conditions can
now be split appropriately between the homogeneous and particular solutions. Again, the
complete solution is obtained by adding together:

(1) the function u, which satisfies the wave equation with homogeneous boundary
conditions on displacement, and initial conditions

n X7 QX QL) . (O
U, (X,0) =Ucos| — |— a4 cos| — |—cot| — |sin| —
IC’s: 2L c Cc c

v, (X,0)=0
(ii) the function 2.2.48

The complete solution is
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sy =ar o 2) - 2 oo 2] s

+ [ A, cos(k,ct) + B, sin(kct)]sin(k, x)

n=0

(2.2.49)

Resonance occurs when the displacements become “infinite”, which from 2.2.49 occurs
when

sinQ—L:0—>Q:nE.
c L

These are precisely the natural frequencies of the system, i.e. the natural frequencies of
(1). Thus the problem of resonance becomes more prominent when the forcing frequency
Q approaches any of the natural frequencies K.

2.2.8 Problems

1.

Consider the case of forced vibration. Use the boundary conditions 2.2.46 to
evaluate the constants in the particular solution 2.2.47 and hence derive the particular
solution 2.2.48.

Consider a fixed-free problem, with the end X = 0 subjected to a forced displacement
U=asinQt and theend X =L free.

(a) Find the vibration of the material. What are the natural frequencies?

(b) When does resonance occur?

[note: the appropriate homogeneous solution and natural frequencies are given in the

Appendix to this section]

Consider a vibrating bar with an oscillatory stress applied to one end,
o(0)=acosQt. Theend x =L is fixed, u(L) = 0.

(a) Find the vibration of the material. What are the natural frequencies?

(b) When does resonance occur?

[note: the appropriate homogeneous solution and natural frequencies are given in the

Appendix to this section]

Solid Mechanics Part 11 40 Kelly



Section 2.2

2.2.9 Appendix to Section 2.2
1. D’Alembert’s Solution of the Wave Equation
In the wave equation 2.2.3, change variables through

E=x-Cct, n=Xx+ct (2.2.50)
Then u=u (f(x,t),n(x,t)) and the chain rule gives

u_0udg duonp _ou_ ou (2.2.51)
ox OF ox o ox  of  on

and similarly for the variable t. Another differentiation gives

2 2 2 2
a—‘j=i(a—“j%+i(a—“]a—’7= U, 0u 0 (2.2.52)
o o\ax)ox ap\ax)ox  aF  agon  on

and similarly for the variable t. Substituting these expression into the wave equation
2.2.3 leads to

o’u
o&on

(2.2.53)

Integrating with respect to & gives ou/0n = y(n7) where y (1) is some arbitrary
function. A further integration then gives U= j y(n)n+f(&)=f(&)+9(n), which is
D’Alembert’s solution, Eqn. 2.2.20:

u(x,t) = f(x—ct)+ g(x +ct) (2.2.54)
Let the initial conditions be
u(x,0)=U(x)
al - (2.2.55)
Ot ixo)
Thus, from 2.2.54,
Ux) = f(x)+g(x). (2.2.56)

Now

Solid Mechanics Part 11 41 Kelly



Section 2.2

ou_ot(S(x1) ag(n(xt) df o dgoy__ df  dg

M _ (2.2.57)
ot ot ot dé ot dn ot dé dpg
Att=0, f(&)="f(x) and g(n)=9(x), so
V(X) LI Y [0 (2.2.58)
Ot ix.0) dx dx

Integrating then gives

Liviapa =-[ 3 @gq [99Dq, - 00— £x)+8(x), 80x,) = 04— (%)
Cy % da % da

(2.2.59)

Subtracting this from Eqn. 2.2.56, and also adding it to Eqn. 2.2.56, gives

f(x)= %U(x)—ziCjV(a)dm%g(xO)

(2.2.60)
1 1 ¢ 1
g(x)=EU<x)+£XJOV<a)da—59<x0>

If one now replaces X with X —cCt in the first of these, and with X + ct in the latter,
addition of the two expressions leads to Eqn. 2.2.22:

u(x,t) = %[u (x+ct)+U (x—ct)] +%Tv (a)da (2.2.61)

x—ct

2. Method of Separation of Variables Solution to the Wave Equation

Assuming a separable solution, write u(x,t) = X (x)T(t) so that 8?u/at* = X (x)T(t) and
o*u/ox* = X"(X)T(t). Inserting these into the wave equation gives

2 2
dT=C2d XT

X 2
dt dX (2.2.62)

This relation states that a function of t equals a function of X and it must hold for all t and
X. It follows that both sides of this expression must be equal to a constant, say K (if the
left hand side were not constant it would change in value as t is changed, but then the
equality would no longer hold because the right hand side does not change when t is
changed — it is a function of X only). Thus there are two second order ordinary
differential equations:
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2 2
d >2< _kx =0, I —c*kT =0 (2.2.63)
dx dt
which have solutions
X =A™ +Be ™ =0, T=ce D™ (2.2.64)

Modes and Natural Frequencies for Homogeneous Boundary Conditions

Suppose first that k is positive. Consider homogeneous boundary conditions, that is,
U =0 and/or ou/0x =0 at the end points x =0,L. Suppose first that u(0,t) =0. Then

u(0,t) = X(0)T(t)=0—> X(0)=0 andso A+ B =0. Ifalso u(L,t) =0, then
AeY*t + Be™" =0 which implies that A=B =0, and u(x,t)= 0. Similarly, if one uses
the conditions ou/0x(0,t) =0 or ou/ox(L,t) =0, or a combination of zero U and first

derivative, one arrives at the same conclusion: a trivial zero solution. Therefore, to obtain
a non-zero solution, one must have k negative, and

X (X) = A cos(AX) + B sin(Ax), k=-1° (2.2.65)
The solution for T (t) must then be
T(t) = C cos(Act) + D sin(Act) (2.2.66)
and the full solution is
u(x,t) = (A cos(Ax) + B sin(x)JC cos(Act)+ D sin(Act)) (2.2.67)
There are four possible combinations of boundary conditions.
1. Fixed-Fixed

Here, u(0,t) =u(L,t)=0. Thus X(0)=A =0 and X(L)=Bsin(AL)=0. For non-zero
B one must have sin(AL)=0—> A =+nz/L,n=0,1, .... Thus one has the infinite
number of solutions X, (x) = B, sin(4, X) , and the complete general solution is
(A=BC,B=BD)°

u(x,t) = i [A, cos(4,ct) + B, sin(4, ct)]sin(4, X) (2.2.68)

n=1

with

% the solutions corresponding to negative values of n,i.e. A =—-nz/L,n=1,2, ..., can be subsumed into

2.2.68 through the constants A, B, ; the solution for n = 0 is zero
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nzc ]
Frequencies: (@, = 4,C = o+ n=12,.. Modes: s1n(/1nx), n=12,...
(2.2.69)
It can be proved that the series 2.2.68 converges and that it is indeed a solution of the

wave equation, provided some fairly weak conditions are fulfilled (see a text on

Advanced Calculus).

The first three modes are plotted in Fig. 2.2.10.

0.5

0.2

Figure 2.2.10: first three mode shapes for fixed-fixed

Case 2. Free-Free

Here, ou/ox(0,t) =du/ox(L,t)=0. Thus X'(0)=AB =0 and
X'(L) = —AAsin(AL) = 0. Thus the general solution is (A= AC, B=AD)

u(x,ty = A, + > [A, cos(4,ct) + B, sin(4,ct)]cos(4,X) (2.2.70)
n=1
with the A, as for fixed-fixed.
. NzC
Frequencies: |@, = 4,C = _/ n=12,... Modes: cos(/inx), n=12,...
(2.2.71)

The displacement profiles of the first three modes are shown in Fig. 2.2.11.
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0.5

Figure 2.2.11: first three mode shapes for free-free

Case 3. Fixed-Free

Here, u(0,t) = ou/ox(L,t)=0. Thus X(0)=A =0 and X(L) = AB cos(AL)=0. For
non-zero B one must have cos(AL)=0>A=2n-)x/2L,n=...-2,-1,0,1, 2, ....
The solution is again given by 2.2.68, which is repeated here,

u(x,t) =" [A, cos(4,ct) + B, sin(4,ct)]sin(1, X) (2.2.72)
n=1
only now
Frequencies: @, = 4,C = %, =12,... Modes: sin(/lnx), n=12,...
(2.2.73)

The displacement profiles of the first three modes are shown in Fig. 2.2.12.

0.5

-0.5

Figure 2.2.12: first three mode shapes for fixed-free
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Case 4. Free-Fixed

Here, du/dx(0,t) =u(L,t)=0. Thus X'(0)=AB =0 and X(L)= Acos(AL)=0. For
non-zero A one must have cos(AL) = 0so the general solution is as for free-free, Eqn.
2.2.70, but with A; =0:

u(x,t) = i[An cos(A,ct) + B, sin(4,ct)]cos(4,X) (2.2.74)

n=1

with the A as for fixed-free.

(2n—-1)zc

=12,... Modes: cos(/lnx), n=12,...
2L

(2.2.75)

Frequencies: o, = 4,C =

The displacement profiles of the first three modes are shown in Fig. 2.2.13.

0.5

Figure 2.2.13: first three mode shapes for free-fixed

Full Solution (incorporating Initial Conditions)
(a) Initial Condition on Displacement
The initial condition on displacement is
u(x,0) =u,(x) (2.2.76)

which give, from 2.2.68, 2.2.70, 2.2.72, 2.2.74,

u(x,0) =" A, sin(4,X) = U, (X) fixed-fixed/fixed-free
n=l1
U(x,0) = Ay + > A, cos(4,X) = Uy (X) free-free (2.2.77)
n=1
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u(x,0) = i A, cos(4,X) =U,(X) free-fixed

These can be solved by using the orthogonality condition of the trigonometric functions:

0, m==n
J- sin(A4, X)sin(4,, x)dx = I cos(4,X)cos(4, X)dx = { (2.2.78)
L/2, m=n

for either of A, =nz/L, (2n—-1)7/2L. Thus multiplying both sides of 2.2.77a by
sin(4,,X) and 2.2.77b-c by cos(4,X) and integrating over [O, L] gives

L
A = % j U, (X)sin(A4, X)dx fixed-fixed/fixed-free
1% 2k
A = IIUO(X)dX, A, =I-[u°(x) cos(4,x)dx,n=1,2,... free-free (2.2.79)
0 0
2 L
A, = [us () cos(2,x)dx free-fixed
0

(b) Initial Condition on Velocity

The initial condition on velocity, L](X,O) =V, (X), gives

U(x,0) = > 2,6B, sin(4,X) =V,(x) fixed-fixed/fixed-free

n=1

U(x,0) = D" 4,6B, cos(4,X) =V, (x) free-fixed/free-free (2.2.80)

n=1

Using the orthogonality conditions again gives

B, = T j V, (X)sin(A, X)dx fixed-fixed/fixed-free
B, = Lol J V, (X) cos(4, X)dx free-fixed/free-free (2.2.81)
Example

Consider the fixed-free case with initial conditions u,(X) =0, v,(X) = 2x/L. Thus
A =0 and
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L _ 2, 0+l
B, =—8 J.XSin[—(zn Dz xjdx= 8 4!‘ (=D 5
(2n-DzrLcy 2L 2n—-1zaLc 7z (2n-1)

B 32(_1)n+1 E

@2n-1’7" ¢

so that
32L& D™ . . (2n-1)c
u(x,t) = sin(4,,X)sin(4, ct), ®, =1,=—-—", n=12,...
(0 7r3cnz=1:(2n—l)3 ()sin(,e) 2L

The period for the first (dominant) mode is T, =27/ A,c =4L/c. The solution is plotted
in Fig. 2.2.14 for ¢ = 5000m/s, L = 0.1m, for the five times iT, /16, i =0...4 (up to the

quarter-period). Thereafter, the solution decreases back to zero, down through negative
displacements, back to zero and then repeats.

x 10°

2.5r

2- t=L/c
150 t=L/2c

u

1k

0.5
| | | | | | | t:0

0 1 1 1
0 0.01 0.02 003 0.04 0.05 006 0.07 0.08 009 0.1
X

Figure 2.2.14: displacements for fixed-free example
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Example

Consider the free-free case with initial conditions U, (X) =UX, V,(X) =0. Thus B, =0

and
L _
u uL
=—|xdx=—
A= k=2
20 nzx 2uL ;
=—| Xcos dx = -1) -1} n=12,...
so that
u(x,t):ULB+%z (_1)2_1 cos(znct)cos(znx)} A :”T” (2.2.34)
/- n

The period for the first (dominant) mode is T, = 27/ A,c = 2L/c. The solution is plotted
in Fig. 2.2.15 again for ¢ = 5000m/s, L =0.1m, for the nine times iT, /16, i =0...8 (up

to the half-period). Thereafter, the solution returns back to the initial position and then
repeats.

0.1
0.09 -
0.08

t=L/4c

0.07 -

0.06 -

0.05

t=L/2c

0.04 -

0.03+
t=3L/4c

0.02 -

0.01-

O 1 1 1 1 1 1 1 1 1 —
0 0.01 002 0.03 004 005 006 007 008 009 0.1 t_L/C

X

Figure 2.2.15: displacements for free-free example
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