1.3 Compatibility of Strain

As seen in the previous section, the displacements can be determined from the strains through integration, to within a rigid body motion. In the two-dimensional case, there are three strain-displacement relations but only two displacement components. This implies that the strains are not independent but are related in some way. The relations between the strains are called **compatibility conditions**.

1.3.1 The Compatibility Relations

Differentiating the first of 1.2.5 twice with respect to y, the second twice with respect to x and the third once each with respect to x and y yields

$$\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} = \frac{\partial^3 u_x}{\partial x \partial y^2}, \quad \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} = \frac{\partial^3 u_y}{\partial x^2 \partial y}, \quad \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y} = \frac{1}{2} \left(\frac{\partial^3 u_x}{\partial x \partial y^2} + \frac{\partial^3 u_y}{\partial x^2 \partial y} \right)$$

It follows that

$$\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} = 2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y}$$

2-D Compatibility Equation (1.3.1)

This compatibility condition is an equation which must be satisfied by the strains at all material particles.

Physical Meaning of the Compatibility Condition

When all material particles in a component deform, translate and rotate, they need to meet up again very much like the pieces of a jigsaw puzzle must fit together. Fig. 1.3.1 illustrates possible deformations and rigid body motions for three line elements in a material. Compatibility ensures that they stay together after the deformation.

deformed - compatibility ensured

undeformed

deformed - compatibility not satisfied

Figure 1.3.1: Deformation and Compatibility

The Three Dimensional Case

There are six compatibility relations to be satisfied in the three dimensional case :

$$\frac{\partial^{2} \varepsilon_{yy}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{zz}}{\partial y^{2}} = 2 \frac{\partial^{2} \varepsilon_{yz}}{\partial y \partial z}, \quad \frac{\partial^{2} \varepsilon_{xx}}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \varepsilon_{yz}}{\partial x} + \frac{\partial \varepsilon_{zx}}{\partial y} + \frac{\partial \varepsilon_{xy}}{\partial z} \right)$$

$$\frac{\partial^{2} \varepsilon_{zz}}{\partial x^{2}} + \frac{\partial^{2} \varepsilon_{xx}}{\partial z^{2}} = 2 \frac{\partial^{2} \varepsilon_{zx}}{\partial z \partial x}, \quad \frac{\partial^{2} \varepsilon_{yy}}{\partial z \partial x} = \frac{\partial}{\partial y} \left(+ \frac{\partial \varepsilon_{yz}}{\partial x} - \frac{\partial \varepsilon_{zx}}{\partial y} + \frac{\partial \varepsilon_{xy}}{\partial z} \right)$$

$$\frac{\partial^{2} \varepsilon_{xx}}{\partial y^{2}} + \frac{\partial^{2} \varepsilon_{yy}}{\partial x^{2}} = 2 \frac{\partial^{2} \varepsilon_{xy}}{\partial z \partial y}, \quad \frac{\partial^{2} \varepsilon_{zz}}{\partial z \partial y} = \frac{\partial}{\partial z} \left(+ \frac{\partial \varepsilon_{yz}}{\partial x} - \frac{\partial \varepsilon_{zx}}{\partial y} - \frac{\partial \varepsilon_{xy}}{\partial z} \right)$$
(1.3.2)

By inspection, it will be seen that these are satisfied by Eqns. 1.2.19.

1.3.2 Problems

1. The displacement field in a material is given by

$$u_x = Axy, \quad u_y = Ay^2,$$

where A is a small constant. Determine

- (a) the components of small strain
- (b) the rotation
- (c) the principal strains
- (d) whether the compatibility condition is satisfied