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1.2 The Strain-Displacement Relations 
 
The strain was introduced in Book I: §4.  The concepts examined there are now extended 
to the case of strains which vary continuously throughout a material. 
 
 
1.2.1 The Strain-Displacement Relations 
 
Normal Strain 
 
Consider a line element of length x  emanating from position ),( yx  and lying in the x - 
direction, denoted by AB  in Fig. 1.2.1.  After deformation the line element occupies 

BA  , having undergone a translation, extension and rotation. 
 

 
 

Figure 1.2.1: deformation of a line element 
 
The particle that was originally at x  has undergone a displacement ),( yxux  and the other 

end of the line element has undergone a displacement ),( yxxux  .  By the definition of 

(small) normal strain,  
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In the limit 0x  one has  
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This partial derivative is a displacement gradient, a measure of how rapid the 
displacement changes through the material, and is the strain at ),( yx .  Physically, it 
represents the (approximate) unit change in length of a line element, as indicated in Fig. 
1.2.2. 
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Figure 1.2.2: unit change in length of a line element 
 
Similarly, by considering a line element initially lying in the y direction, the strain in the y 
direction can be expressed as 
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       (1.2.3) 

 
Shear Strain 
 
The particles A and B in Fig. 1.2.1 also undergo displacements in the y direction and this 
is shown in Fig. 1.2.3.  In this case, one has 
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Figure 1.2.3: deformation of a line element 
 
A similar relation can be derived by considering a line element initially lying in the y 
direction.  A summary is given in Fig. 1.2.4.  From the figure, 
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provided that (i)   is small and (ii) the displacement gradient xux  /  is small.  A similar 

expression for the angle   can be derived, and hence the shear strain can be written in 
terms of displacement gradients. 
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Figure 1.2.4: strains in terms of displacement gradients 
 
 
The Small-Strain Stress-Strain Relations 
 
In summary, one has 
 





























x

u

y

u
y

u
x

u

yx
xy

y
yy

x
xx

2

1





 2-D Strain-Displacement relations      (1.2.5) 

 
 
1.2.2 Geometrical Interpretation of Small Strain 
 
A geometric interpretation of the strain was given in Book I: §4.1.4.  This interpretation is 
repeated here, only now in terms of displacement gradients. 
 
Positive Normal Strain 
 
Fig. 1.2.5a,  
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Negative Normal Strain 
 
Fig 1.2.5b, 
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Figure 1.2.5: some simple deformations; (a) positive normal strain, (b) negative 
normal strain, (c) simple shear 

 
Simple Shear 
 
Fig. 1.2.5c, 
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Pure Shear 
 
Fig 1.2.6a, 
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1.2.3 The Rotation 
 
Consider an arbitrary deformation (omitting normal strains for ease of description), as 
shown in Fig. 1.2.6.  As usual, the angles   and   are small, equal to their tangents, and 

/yu x    , /xu y    .  

 

 
 

Figure 1.2.6: arbitrary deformation (shear and rotation) 
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Now this arbitrary deformation can be decomposed into a pure shear and a rigid rotation 
as depicted in Fig. 1.2.7.  In the pure shear,  1

2xy        .  In the rotation, the 

angle of rotation is then  1
2   . 

 

 
 

Figure 1.2.7: decomposition of a strain into a pure shear and a rotation 
 
This leads one to define the rotation of a material particle, z , the “z” signifying the axis 
about which the element is rotating: 
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The rotation will in general vary throughout a material.  When the rotation is everywhere 
zero, the material is said to be irrotational. 
 
For a pure rotation, note that 
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1.2.4 Fixing Displacements 
 
The strains give information about the deformation of material particles but, since they do 
not encompass translations and rotations, they do not give information about the precise 
location in space of particles.  To determine this, one must specify three displacement 
components (in two-dimensional problems).  Mathematically, this is equivalent to saying 
that one cannot uniquely determine the displacements from the strain-displacement 
relations 1.2.5. 
 
Example 
 
Consider the strain field 0,01.0  xyyyxx  .  The displacements can be obtained by 

integrating the strain-displacement relations: 
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        (1.2.12) 

 
where f and g are unknown functions of y and x respectively.  Substituting the 
displacement expressions into the shear strain relation gives 
 

)()( xgyf  .           (1.2.13) 
 
Any expression of the form )()( yGxF   which holds for all x and y implies that F and G 
are constant1.  Since gf ,  are constant, one can integrate to get 

CxBxgDyAyf  )(,)( .  From 1.2.13, DC  , and 
 

CxBu
CyAxu

y

x


 01.0
     (1.2.14) 

 
There are three arbitrary constants of integration, which can be determined by specifying 
three displacement components.  For example, suppose that it is known that 
 

bauuu xyx  ),0(,0)0,0(,0)0,0( .  (1.2.15) 

 
In that case, abCBA /,0,0  , and, finally,  
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    (1.2.16) 

 
which corresponds to Fig. 1.2.8, with )/( ab  being the (tan of the small) angle by which 
the element has rotated. 
 
 

                                                 
1 since, if this was not so, a change in x would change the left hand side of this expression but would not 
change the right hand side and so the equality cannot hold 
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Figure 1.2.8: an element undergoing a normal strain and a rotation 
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In general, the displacement field will be of the form 
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      (1.2.17) 

 
and indeed Eqn. 1.2.16 is of this form.  Physically, A, B and C represent the possible rigid 
body motions of the material as a whole, since they are the same for all material particles.  
A corresponds to a translation in the x  direction, B corresponds to a translation in the x  
direction, and C corresponds to a positive (counterclockwise) rotation. 
 
 
1.2.5 Three Dimensional Strain 
 
The three-dimensional stress-strain relations analogous to Eqns. 1.2.5 are 
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3-D Stress-Strain relations      (1.2.18) 
 
The rotations are 
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1.2.6 Problems 
 
1. The displacement field in a material is given by 

  2,3 AxyuyxAu yx   

where A is a small constant. 
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(a) Evaluate the strains.  What is the rotation z ?  Sketch the deformation and any 
rigid body motions of a differential element at the point )1,1(  

(b) Sketch the deformation and rigid body motions at the point )2,0( , by using a pure 
shear strain superimposed on the rotation. 

 
2. The strains in a material are given by 

  xyyyxx x ,0,  

Evaluate the displacements in terms of three arbitrary constants of integration, in the 
form of Eqn. 1.2.17,  
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What is the rotation? 
 
3. The strains in a material are given by 

AxAyAxy xyyyxx   ,, 2  

where A is a small constant.  Evaluate the displacements in terms of three arbitrary 
constants of integration.  What is the rotation? 
 

4. Show that, in a state of plane strain ( 0zz ) with zero body force, 
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where e is the volumetric strain (dilatation), the sum of the normal strains: 

zzyyxxe    (see Book I, §4.3). 

 


