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1 Differential Equations 
for Solid Mechanics 

 
 
Simple problems involving homogeneous stress states have been considered so far, 
wherein the stress is the same throughout the component under study.  An exception to 
this was the varying stress field in the loaded beam, but there a simplified set of elasticity 
equations was used.   Here the question of varying stress and strain fields in materials is 
considered.  In order to solve such problems, a differential formulation is required.  In this 
Chapter, a number of differential equations will be derived, relating the stresses and body 
forces (equations of motion), the strains and displacements (strain-displacement 
relations) and the strains with each other (compatibility relations).  These equations are 
derived from physical principles and so apply to any type of material, although the latter 
two are derived under the assumption of small strain.   
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1.1 The Equations of Motion 
 
In Book I, balance of forces and moments acting on any component was enforced in order 
to ensure that the component was in equilibrium.  Here, allowance is made for stresses 
which vary continuously throughout a material, and force equilibrium of any portion of 
material is enforced. 
 
One-Dimensional Equation 
 
Consider a one-dimensional differential element of length x  and cross sectional area A, 
Fig. 1.1.1.  Let the average body force per unit volume acting on the element be b and the 
average acceleration and density of the element be a and  .  Stresses   act on the 
element. 
 

 
 

Figure 1.1.1: a differential element under the action of surface and body forces 
 

The net surface force acting is AxAxx )()(   .  If the element is small, then the 
body force and velocity can be assumed to vary linearly over the element and the average 
will act at the centre of the element.  Then the body force acting on the element is xAb  
and the inertial force is xaA .  Applying Newton’s second law leads to 
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so that, by the definition of the derivative, in the limit as 0x , 

 

ab
dx

d 
  1-d Equation of Motion (1.1.2) 

 
which is the one-dimensional equation of motion.  Note that this equation was derived 
on the basis of a physical law and must therefore be satisfied for all materials, whatever 
they be composed of. 
 
The derivative dxd /  is the stress gradient – physically, it is a measure of how rapidly 
the stresses are changing. 
 
Example 
 
Consider a bar of length l which hangs from a ceiling, as shown in Fig. 1.1.2.   
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Figure 1.1.2: a hanging bar 
 
The gravitational force is mgF   downward and the body force per unit volume is thus 

gb  .  There are no accelerating material particles.  Taking the z axis positive down, an 
integration of the equation of motion gives 
 

cgzg
dz

d
 

0    (1.1.3) 

 
where c is an arbitrary constant.  The lower end of the bar is free and so the stress there is 
zero, and so 
 

 zlg                        (1.1.4) 
 

■ 
 
Two-Dimensional Equations 
 
Consider now a two dimensional infinitesimal element of width and height x  and y  
and unit depth (into the page). 
 
Looking at the normal stress components acting in the x direction, and allowing for 
variations in stress over the element surfaces, the stresses are as shown in Fig. 1.1.3. 
 

 
 

Figure 1.1.3: varying stresses acting on a differential element 
 
Using a (two dimensional) Taylor series and dropping higher order terms then leads to the 
linearly varying stresses illustrated in Fig. 1.1.4. (where  yxxxxx ,   and the partial 

derivatives are evaluated at  yx, ), which is a reasonable approximation when the 
element is small. 
 

y

x
),( yxxx

),( yyxxx 

),( yxxxx 

),( yyxxxx 

l
z



Section 1.1 

Solid Mechanics Part II                                                                                Kelly 5

 
 

Figure 1.1.4: linearly varying stresses acting on a differential element 
 
The effect (resultant force) of this linear variation of stress on the plane can be replicated 
by a constant stress acting over the whole plane, the size of which is the average stress.  
For the left and right sides, one has, respectively, 
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One can take away the stress yy xx  /)2/1(   from both sides without affecting the net 

force acting on the element so one finally has the representation shown in Fig. 1.1.5. 
 

 
 

Figure 1.1.5: net stresses acting on a differential element 
 
Carrying out the same procedure for the shear stresses contributing to a force in the 
x direction leads to the stresses shown in Fig. 1.1.6. 
 

 
 

Figure 1.1.6: normal and shear stresses acting on a differential element 
 
Take xx ba ,  to be the average acceleration and body force, and   to be the average 

density.  Newton’s law then yields 
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xyxx
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(1.1.6) 
 

which, dividing through by yx  and taking the limit, gives 
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A similar analysis for force components in the y direction yields another equation and 
one then has the two-dimensional equations of motion: 
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     2-D Equations of Motion (1.1.8) 

 
Three-Dimensional Equations 
 
Similarly, one can consider a three-dimensional element, and one finds that 
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     3-D Equations of Motion (1.1.9) 

 
These three equations express force-balance in, respectively, the zyx ,,  directions. 
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Figure 1.1.7: from Cauchy’s Exercices de Mathematiques (1829) 
 
The Equations of Equlibrium 
 
If the material is not moving (or is moving at constant velocity) and is in static 
equilibrium, then the equations of motion reduce to the equations of equilibrium, 
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     3-D Equations of Equilibrium (1.1.10) 

 
These equations express the force balance between surface forces and body forces in a 
material.  The equations of equilibrium may also be used as a good approximation in the 
analysis of materials which have relatively small accelerations. 

 

1.1.2 Problems 
 
1. What does the one-dimensional equation of motion say about the stresses in a bar in 

the absence of any body force or acceleration? 
 
2. Does equilibrium exist for the following two dimensional stress distribution in the 

absence of body forces? 
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3. The elementary beam theory predicts that the stresses in a circular beam due to 
bending are 

)4/(3/)(,/ 422 RIIyRVIMy yxxyxx    

and all the other stress components are zero.  Do these equations satisfy the equations 
of equilibrium? 

 
4. With respect to axes xyz0  the stress state is given in terms of the coordinates by the 

matrix 
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Determine the body force acting on the material if it is at rest. 
 
5. What is the acceleration of a material particle of density -3kgm3.0 , subjected to 

the stress  
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and gravity (the z  axis is directed vertically upwards from the ground). 
 
6. A fluid at rest is subjected to a hydrostatic pressure p and the force of gravity only. 

(a)  Write out the equations of motion for this case. 
(b)  A very basic formula of hydrostatics, to be found in any elementary book on fluid 

mechanics, is that giving the pressure variation in a static fluid, 
ghp   

where   is the density of the fluid, g is the acceleration due to gravity, and h  is 
the vertical distance between the two points in the fluid (the relative depth).  
Show that this formula is but a special case of the equations of motion. 
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1.2 The Strain-Displacement Relations 
 
The strain was introduced in Book I: §4.  The concepts examined there are now extended 
to the case of strains which vary continuously throughout a material. 
 
 
1.2.1 The Strain-Displacement Relations 
 
Normal Strain 
 
Consider a line element of length x  emanating from position ),( yx  and lying in the x - 
direction, denoted by AB  in Fig. 1.2.1.  After deformation the line element occupies 

BA  , having undergone a translation, extension and rotation. 
 

 
 

Figure 1.2.1: deformation of a line element 
 
The particle that was originally at x  has undergone a displacement ),( yxux  and the other 

end of the line element has undergone a displacement ),( yxxux  .  By the definition of 

(small) normal strain,  
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In the limit 0x  one has  
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This partial derivative is a displacement gradient, a measure of how rapid the 
displacement changes through the material, and is the strain at ),( yx .  Physically, it 
represents the (approximate) unit change in length of a line element, as indicated in Fig. 
1.2.2. 
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Figure 1.2.2: unit change in length of a line element 
 
Similarly, by considering a line element initially lying in the y direction, the strain in the y 
direction can be expressed as 
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Shear Strain 
 
The particles A and B in Fig. 1.2.1 also undergo displacements in the y direction and this 
is shown in Fig. 1.2.3.  In this case, one has 
 

x
x

u
BB y 




*     (1.2.4) 

 

 
 

Figure 1.2.3: deformation of a line element 
 
A similar relation can be derived by considering a line element initially lying in the y 
direction.  A summary is given in Fig. 1.2.4.  From the figure, 
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provided that (i)   is small and (ii) the displacement gradient xux  /  is small.  A similar 

expression for the angle   can be derived, and hence the shear strain can be written in 
terms of displacement gradients. 
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Figure 1.2.4: strains in terms of displacement gradients 
 
 
The Small-Strain Stress-Strain Relations 
 
In summary, one has 
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 2-D Strain-Displacement relations      (1.2.5) 

 
 
1.2.2 Geometrical Interpretation of Small Strain 
 
A geometric interpretation of the strain was given in Book I: §4.1.4.  This interpretation is 
repeated here, only now in terms of displacement gradients. 
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Fig. 1.2.5a,  
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Negative Normal Strain 
 
Fig 1.2.5b, 
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Figure 1.2.5: some simple deformations; (a) positive normal strain, (b) negative 
normal strain, (c) simple shear 

 
Simple Shear 
 
Fig. 1.2.5c, 
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Pure Shear 
 
Fig 1.2.6a, 
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1.2.3 The Rotation 
 
Consider an arbitrary deformation (omitting normal strains for ease of description), as 
shown in Fig. 1.2.6.  As usual, the angles   and   are small, equal to their tangents, and 

/yu x    , /xu y    .  

 

 
 

Figure 1.2.6: arbitrary deformation (shear and rotation) 
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Now this arbitrary deformation can be decomposed into a pure shear and a rigid rotation 
as depicted in Fig. 1.2.7.  In the pure shear,  1

2xy        .  In the rotation, the 

angle of rotation is then  1
2   . 

 

 
 

Figure 1.2.7: decomposition of a strain into a pure shear and a rotation 
 
This leads one to define the rotation of a material particle, z , the “z” signifying the axis 
about which the element is rotating: 
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The rotation will in general vary throughout a material.  When the rotation is everywhere 
zero, the material is said to be irrotational. 
 
For a pure rotation, note that 
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1.2.4 Fixing Displacements 
 
The strains give information about the deformation of material particles but, since they do 
not encompass translations and rotations, they do not give information about the precise 
location in space of particles.  To determine this, one must specify three displacement 
components (in two-dimensional problems).  Mathematically, this is equivalent to saying 
that one cannot uniquely determine the displacements from the strain-displacement 
relations 1.2.5. 
 
Example 
 
Consider the strain field 0,01.0  xyyyxx  .  The displacements can be obtained by 

integrating the strain-displacement relations: 
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)(01.0

xgdyu

yfxdxu

yyy

xxx
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
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
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        (1.2.12) 

 
where f and g are unknown functions of y and x respectively.  Substituting the 
displacement expressions into the shear strain relation gives 
 

)()( xgyf  .           (1.2.13) 
 
Any expression of the form )()( yGxF   which holds for all x and y implies that F and G 
are constant1.  Since gf ,  are constant, one can integrate to get 

CxBxgDyAyf  )(,)( .  From 1.2.13, DC  , and 
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There are three arbitrary constants of integration, which can be determined by specifying 
three displacement components.  For example, suppose that it is known that 
 

bauuu xyx  ),0(,0)0,0(,0)0,0( .  (1.2.15) 

 
In that case, abCBA /,0,0  , and, finally,  
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which corresponds to Fig. 1.2.8, with )/( ab  being the (tan of the small) angle by which 
the element has rotated. 
 
 

                                                 
1 since, if this was not so, a change in x would change the left hand side of this expression but would not 
change the right hand side and so the equality cannot hold 
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Figure 1.2.8: an element undergoing a normal strain and a rotation 
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In general, the displacement field will be of the form 
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      (1.2.17) 

 
and indeed Eqn. 1.2.16 is of this form.  Physically, A, B and C represent the possible rigid 
body motions of the material as a whole, since they are the same for all material particles.  
A corresponds to a translation in the x  direction, B corresponds to a translation in the x  
direction, and C corresponds to a positive (counterclockwise) rotation. 
 
 
1.2.5 Three Dimensional Strain 
 
The three-dimensional stress-strain relations analogous to Eqns. 1.2.5 are 
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3-D Stress-Strain relations      (1.2.18) 
 
The rotations are 
 

1 1 1
, ,

2 2 2
y yx x z z

z y x

u uu u u u

x y z x y z
  
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     (1.2.19) 

 
 
1.2.6 Problems 
 
1. The displacement field in a material is given by 

  2,3 AxyuyxAu yx   

where A is a small constant. 

x

y

a

b
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(a) Evaluate the strains.  What is the rotation z ?  Sketch the deformation and any 
rigid body motions of a differential element at the point )1,1(  

(b) Sketch the deformation and rigid body motions at the point )2,0( , by using a pure 
shear strain superimposed on the rotation. 

 
2. The strains in a material are given by 

  xyyyxx x ,0,  

Evaluate the displacements in terms of three arbitrary constants of integration, in the 
form of Eqn. 1.2.17,  

CxBu
CyAu

y

x






 

What is the rotation? 
 
3. The strains in a material are given by 

AxAyAxy xyyyxx   ,, 2  

where A is a small constant.  Evaluate the displacements in terms of three arbitrary 
constants of integration.  What is the rotation? 
 

4. Show that, in a state of plane strain ( 0zz ) with zero body force, 
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where e is the volumetric strain (dilatation), the sum of the normal strains: 

zzyyxxe    (see Book I, §4.3). 
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1.3 Compatibility of Strain 
 
As seen in the previous section, the displacements can be determined from the strains 
through integration, to within a rigid body motion.  In the two-dimensional case, there are 
three strain-displacement relations but only two displacement components.  This implies 
that the strains are not independent but are related in some way.  The relations between 
the strains are called compatibility conditions. 
 
 
1.3.1 The Compatibility Relations 
 
Differentiating the first of 1.2.5 twice with respect to y , the second twice with respect to 
x  and the third once each with respect to x  and y  yields 
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It follows that 
 

yxxy
xyyyxx
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2  2-D Compatibility Equation   (1.3.1) 

 
This compatibility condition is an equation which must be satisfied by the strains at all 
material particles. 
 
Physical Meaning of the Compatibility Condition 
 
When all material particles in a component deform, translate and rotate, they need to meet 
up again very much like the pieces of a jigsaw puzzle must fit together.  Fig. 1.3.1 
illustrates possible deformations and rigid body motions for three line elements in a 
material.  Compatibility ensures that they stay together after the deformation. 
 

 
 

Figure 1.3.1: Deformation and Compatibility 
 
 
 
 

undeformed 

deformed 
- compatibility ensured 

deformed 
- compatibility not satisfied 
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The Three Dimensional Case 
 
There are six compatibility relations to be satisfied in the three dimensional case: 
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By inspection, it will be seen that these are satisfied by Eqns. 1.2.19. 
 
 
1.3.2 Problems 
 
1. The displacement field in a material is given by 

2, AyuAxyu yx  , 

where A is a small constant.  Determine 
(a) the components of small strain 
(b) the rotation 
(c) the principal strains  
(d) whether the compatibility condition is satisfied 

 


