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6 Linear Elasticity 
 
 
The simplest constitutive law for solid materials is the linear elastic law, which assumes a 
linear relationship between stress and engineering strain.  This assumption turns out to be 
an excellent predictor of the response of components which undergo small deformations, 
for example steel and concrete structures under large loads, and also works well for 
practically any material at a sufficiently small load. 
 
The linear elastic model is discussed in this chapter and some elementary problems 
involving elastic materials are solved.  Anisotropic elasticity is discussed in Section 6.3.  
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6.1 The Linear Elastic Model 
 
 
6.1.1 The Linear Elastic Model 
 
Repeating some of what was said in Section 5.3: the Linear Elastic model is used to 
describe materials which respond as follows: 

(i) the strains in the material are small1 (linear) 
(ii) the stress is proportional to the strain,    (linear) 
(iii) the material returns to its original shape when the loads are removed, and the 

unloading path is the same as the loading path (elastic) 
(iv) there is no dependence on the rate of loading or straining (elastic) 

 
From the discussion in the previous chapter, this model well represents the engineering 
materials up to their elastic limit.  It also models well almost any material provided the 
stresses are sufficiently small. 
 
The stress-strain (loading and unloading) curve for the Linear Elastic solid is shown in 
Fig. 6.1.1a.  Other possible responses are shown in Figs. 6.1.1b,c.  Fig. 6.1.1b shows the 
typical response of a rubbery-type material and many biological tissues; these are non-
linear elastic materials.  Fig. 6.1.1c shows the typical response of viscoelastic materials 
(see Chapter 10) and that of many plastically and viscoplastically deforming materials 
(see Chapters 11 and 12). 
 

 
 

Figure 6.1.1: Different stress-strain relationships; (a) linear elastic, (b) non-linear 
elastic, (c) viscoelastic/plastic/viscoplastic 

 
It will be assumed at first that the material is isotropic and homogeneous.  The case of an 
anisotropic elastic material is discussed in Section 6.3. 
 
 
 
 
 

                                                 
1 if the small-strain approximation is not made, the stress-strain relationship will be inherently non-linear; 
the actual strain, Eqn. 4.1.7, involves (non-linear) squares and square-roots of lengths  













load 

unload 

)a( )b( )c(

hysteresis 
loop 



Section 6.1 

Solid Mechanics Part I                                                                                Kelly 146

6.1.2 Stress-Strain Law 
 
Consider a cube of material subjected to a uniaxial tensile stress xx , Fig. 6.1.2a.  One 

would expect it to respond by extending in the x direction, 0xx , and to contract 

laterally, so 0 zzyy  , these last two being equal because of the isotropy of the 

material.  With stress proportional to strain, one can write 
 

xxzzyyxxxx EE
  ,

1
        (6.1.1) 

 

 
 
Figure 6.1.2: an element of material subjected to a uniaxial stress; (a) normal strain, 

(b) shear strain 
 
The constant of proportionality between the normal stress and strain is the Young’s 
Modulus, Eqn. 5.2.5, the measure of the stiffness of the material.  The material parameter 
  is the Poisson’s ratio, Eqn. 5.2.6.  Since xxzzyy   , it is a measure of the 

contraction relative to the normal extension. 
 
Because of the isotropy/symmetry of the material, the shear strains are zero, and so the 
deformation of Fig. 6.1.2b, which shows a non-zero xy , is not possible – shear strain can 

arise if the material is not isotropic. 
 
One can write down similar expressions for the strains which result from a uniaxial 
tensile yy  stress and a uniaxial zz  stress: 
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        (6.1.2) 

 
Similar arguments can be used to write down the shear strains which result from the 
application of a shear stress: 
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The constant of proportionality here is the Shear Modulus  , Eqn. 5.2.8, the measure of 
the resistance to shear deformation (the letter G was used in Eqn. 5.2.8 – both G and   
are used to denote the Shear Modulus, the latter in more “mathematical” and “advanced” 
discussions) . 
 
The strain which results from a combination of all six stresses is simply the sum of the 
strains which result from each2: 
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 (6.1.4) 

 
These equations involve three material parameters.  It will be proved in §6.3 that an 
isotropic linear elastic material can have only two independent material parameters and 
that, in fact,  
 

 



12

E
.     (6.1.5) 

 
This relation will be verified in the following example. 
 
Example: Verification of Eqn. 6.1.5 
 
Consider the simple shear deformation shown in Fig. 6.1.3, with 0xy  and all other 

strains zero.  With the material linear elastic, the only non-zero stress is xyxy  2 .   

 

  
Figure 6.1.3: a simple shear deformation 

 

                                                 
2 this is called the principle of linear superposition: the "effect" of a sum of "causes" is equal to the sum 
of the individual "effects" of each "cause".  For a linear relation, e.g. E  , the effects of two causes  

,1 2   are 1E  and 2E , and the effect of the sum of the causes 1 2   is indeed equal to the sum of the 

individual effects: 1 2 1 2( )E E E     .  This is not true of a non-linear relation, e.g. 2E  , since 
2 2 2

1 2 1 2( )E E E      
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Using the strain transformation equations, Eqns. 4.2.2, the only non-zero strains in a 
second coordinate system yx  , with x  at o45  from the x axis (see Fig. 6.1.3), are 

xyxx    and xyyy   .  Because the material is isotropic, Eqns 6.1.4 hold also in this 

second coordinate system and so the stresses in the new coordinate system can be 
determined by solving the equations 
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   (6.1.6) 

 
which results in 
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But the stress transformation equations, Eqns. 3.4.8, with xyxy  2 , give 

xyxx  2  and xyyy  2  and so Eqn. 6.1.5 is verified. 

■ 
 
Relation 6.1.5 allows the Linear Elastic Solid stress-strain law, Eqn. 6.1.4, to be written 
as 
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   Stress-Strain Relations     (6.1.8) 

 
This is known as Hooke’s Law.  These equations can be solved for the stresses to get 
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    Stress-Strain Relations    (6.1.9)  

 
Values of E and   for a number of materials are given in Table 6.1.1 below (see also 
Table 5.2.2). 
 

 
Table 6.1.1: Young’s Modulus E and Poisson’s Ratio ν for a selection of materials at 

20oC 
 
 
Volume Change 
 
Recall that the volume change in a material undergoing small strains is given by the sum 
of the normal strains (see Section 4.3).  From Hooke’s law, normal stresses cause normal 
strain and shear stresses cause shear strain.  It follows that normal stresses produce 
volume changes and shear stresses produce distortion (change in shape), but no volume 
change. 
 
 
6.1.3 Two Dimensional Elasticity 
 
The above three-dimensional stress-strain relations reduce in the case of a two-
dimensional stress state or a two-dimensional strain state. 
 

Material E (GPa) 
Grey Cast Iron 100 0.29
A316 Stainless Steel 196 0.3
A5 Aluminium 68 0.33
Bronze 130 0.34
Plexiglass 2.9 0.4
Rubber 0.001-2 0.4-0.49
Concrete 23-30 0.2
Granite 53-60 0.27
Wood (pinewood)
fibre direction 
transverse direction 

17
1

0.45
0.79
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Plane Stress 
 
In plane stress (see Section 3.5), 0 zzyzxz  , Fig. 6.1.5, so the stress-strain 

relations reduce to 
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 Stress-Strain Relations (Plane Stress)   (6.1.10) 
 
with 
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Figure 6.1.5: Plane stress 
 
Note that the zz  strain is not zero.  Physically, zz  corresponds to a change in thickness 
of the material perpendicular to the direction of loading. 
 
Plane Strain 
 
In plane strain (see Section 4.2), 0 zzyzxz  , Fig. 6.1.6, and the stress-strain 

relations reduce to 
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Stress-Strain Relations (Plane Strain)   (6.1.12) 
 
with 
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Again, note here that the stress component zz  is not zero.  Physically, this stress 
corresponds to the forces preventing movement in the z direction. 
 

 
 

Figure 6.1.6 Plane strain - a thick component constrained in one direction 
 
 
Similar Solutions 
 
The expressions for plane stress and plane strain are very similar.  For example, the plane 
strain constitutive law 6.1.12 can be derived from the corresponding plane stress 
expressions 6.1.10 by making the substitutions  
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in 6.1.10 and then dropping the primes.  The plane stress expressions can be derived from 
the plane strain expressions by making the substitutions  
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in 6.1.12 and then dropping the primes.  Thus, if one solves a plane stress problem, one 
has automatically solved the corresponding plane strain problem, and vice versa. 
 
 
6.1.4 Problems 
 
1. A strain gauge at a certain point on the surface of a thin A5 Aluminium component 

(loaded in-plane) records strains of μm15μm,30μm,60  xyyyxx   .  

Determine the principal stresses.  (See Table 6.1.1 for the material properties.) 
 
2. Use the stress-strain relations to prove that, for a linear elastic solid,  
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Note: from Eqns. 3.5.4 and 4.2.4, these show that the principal axes of stress and 
strain coincide for an isotropic elastic material 
 

3. Consider the case of hydrostatic pressure in a linearly elastic solid: 
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as might occur, for example, when a spherical component is surrounded by a fluid 
under high pressure, as illustrated in the figure below.  Show that the volumetric strain 
(Eqn. 4.3.5) is equal to 
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p
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so that the Bulk Modulus, Eqn. 5.2.9, is 
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4. Consider again Problem 2 from §3.5.7.   

(a) Assuming the material to be linearly elastic, what are the strains?  Draw a second 
material element (superimposed on the one shown below) to show the deformed 
shape of the square element – assume the displacement of the box-centre to be 
zero and that there is no rotation.  Note how the free surface moves, even though 
there is no stress acting on it. 
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(b) What are the principal strains 1  and 2 ?  You will see that the principal 
directions of stress and strain coincide (see Problem 2) – the largest normal stress 
and strain occur in the same direction. 

 
 
5. Consider a very thin sheet of material subjected to a normal pressure p on one of its 

large surfaces.  It is fixed along its edges.  This is an example of a plate problem, an 
important branch of elasticity with applications to boat hulls, aircraft fuselage, etc. 
(a) write out the complete three dimensional stress-strain relations (both cases, strain 

in terms of stress, Eqns. 6.1.8, stress in terms of strain, Eqns. 6.1.9). Following the 
discussion on thin plates in section 3.5.4, the shear stresses yzxz  , , can be taken 

to be zero throughout the plate. Simplify the relations using this fact, the pressure 
boundary condition on the large face and the coordinate system shown. 

(b) assuming that the through thickness change in the sheet can be neglected, show 
that 

 yyxxp    

 

 
 

6. A thin linear elastic rectangular plate with width a and height b is subjected to a 
uniform compressive stress 0  as shown below.  Show that the slope of the plate 

diagonal shown after deformation is given by 
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What is the magnitude of   for a steel plate ( GPa210E , 3.0 ) of dimensions 
2cm2020  with MPa10  ? 
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6.2 Homogeneous Problems in Linear Elasticity 
 
A homogeneous stress (strain) field is one where the stress (strain) is the same at all 
points in the material.  Homogeneous conditions will arise when the geometry is simple 
and the loading is simple. 
 
 
6.2.1 Elastic Rectangular Cuboids 
 
Hooke’s Law, Eqns. 6.1.8 or 6.1.9, can be used to solve problems involving 
homogeneous stress and deformation.  Hoooke’s law is 6 equations in 12 unknowns (6 
stresses and 6 strains).  If some of these unknowns are given, the rest can be found from 
the relations. 
 
Example 
 
Consider the block of linear elastic material shown in Fig. 6.2.1.  It is subjected to an 
equi-biaxial stress of 0  yyxx . 

 
Since this is an isotropic elastic material, the shears stresses and strains will be all zero for 
such a loading.  One thus need only consider the three normal stresses and strains. 
 
There are now 3 equations (the first 3 of Eqns. 6.1.8 or 6.1.9) in 6 unknowns.  One thus 
needs to know three of the normal stresses and/or strains to find a solution.  From the 
loading, one knows that xx   and yy  .  The third piece of information comes 

from noting that the surfaces parallel to the yx   plane are free surfaces (no forces acting 

on them) and so 0zz .   
 
From Eqn. 6.1.8 then, the strains are 
 

0,2,)1(  yzxzxyzzyyxx EE
  

 
As expected, yyxx    and 0zz . 

 

 
 

Figure 6.2.1: A block of linear elastic material subjected to an equi-biaxial stress 
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6.2.2 Problems 
 
1. A block of isotropic linear elastic material is subjected to a compressive normal stress 

o  over two opposing faces.  The material is constrained (prevented from moving) in 

one of the direction normal to these faces.  The other faces are free. 
(a) What are the stresses and strains in the block, in terms of Eo ,, ? 

(b) Calculate three maximum shear stresses, one for each plane (parallel to the faces 
of the block).  Which of these is the overall maximum shear stress acting in the 
block? 

 
2. Repeat problem 1a, only with the free faces now fixed also. 
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6.3 Anisotropic Elasticity 
 
There are many materials which, although well modelled using the linear elastic model, 
are not nearly isotropic.  Examples are wood, composite materials and many biological 
materials.  The mechanical properties of these materials differ in different directions.  
Materials with this direction dependence are called anisotropic (see Section 5.2.7). 
 
 
6.3.1 Material Constants 
 
The most general form of Hooke’s law, the generalised Hooke’s Law, for a linear elastic 
material is  
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      (6.3.1) 

 
where each stress component depends (linearly) on all strain components.  This new 
notation, with only one subscript for the stress and strain, numbered from 1…6, is helpful 
as it allows the equations of anisotropic elasticity to be written in matrix form.  The 36 

s'ijC  are material constants called the stiffnesses, and in principle are to be obtained 

from experiment.  The matrix of stiffnesses is called the stiffness matrix.  Note that these 
equations imply that a normal stress xx  will induce a material element to not only stretch 

in the x direction and contract laterally, but to undergo shear strain too, as illustrated 
schematically in Fig. 6.3.1. 
 

 
 
Figure 6.3.1: an element undergoing shear strain when subjected to a normal stress 

only 
 
In section 8.4.3, when discussing the strain energy in an elastic material, it will be shown 
that it is necessary for the stiffness matrix to be symmetric and so there are only 21 
independent elastic constants in the most general case of anisotropic elasticity. 
 
Eqns. 6.3.1 can be inverted so that the strains are given explicitly in terms of the stresses: 
 

xxxx
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The s'ijS  here are called compliances, and the matrix of compliances is called the 

compliance matrix.  The bottom half of the compliance matrix has been omitted since it 
too is symmetric. 
 
It is difficult to model fully anisotropic materials due to the great number of elastic 
constants.  Fortunately many materials which are not fully isotropic still have certain 
material symmetries which simplify the above equations.  These material types are 
considered next. 
 
 
6.3.2 Orthotropic Linear Elasticity 
 
An orthotropic material is one which has three orthogonal planes of microstructural 
symmetry.  An example is shown in Fig. 6.3.2a, which shows a glass-fibre composite 
material.  The material consists of thousands of very slender, long, glass fibres bound 
together in bundles with oval cross-sections.  These bundles are then surrounded by a 
plastic binder material.  The continuum model of this composite material is shown in Fig. 
6.3.2b wherein the fine microstructural details of the bundles and surrounding matrix are 
“smeared out” and averaged.  Three mutually perpendicular planes of symmetry can be 
passed through each point in the continuum model.  The zyx ,,  axes forming these planes 
are called the material directions. 
 

 
 

Figure 6.3.2: an orthotropic material; (a) microstructural detail, (b) continuum 
model 
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The material symmetry inherent in the orthotropic material reduces the number of 
independent elastic constants.  To see this, consider an element of orthotropic material 
subjected to a shear strain  xy 6  and also a strain  xy  6 , as in Fig. 6.3.3. 

 

 
 

Figure 6.3.3: an element of orthotropic material undergoing shear strain 
 
From Eqns. 6.3.1, the stresses induced by a strain 6  only are 
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           (6.3.3) 

 
The stresses induced by a strain 6  only are (the prime is added to distinguish these 

stresses from those of Eqn. 6.3.3) 
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    (6.3.4) 

 
These stresses, together with the strain, are shown in Fig. 6.3.4 (the microstructure is also 
indicated) 
 

 
 

Figure 6.3.4: an element of orthotropic material undergoing shear strain; (a) 
positive strain, (b) negative strain 

 
Because of the symmetry of the material (print this page out, turn it over, and Fig. 6.3.4a 
viewed from the “other side” of the page is the same as Fig. 6.3.4b on “this side” of the 
page), one would expect the normal stresses in Fig. 6.3.4 to be the same, 11   , 
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22    , but the shear stresses to be of opposite sign, 66   .  Eqns. 6.3.3-4 then 

imply that 
 

05646362616  CCCCC         (6.3.5) 

 
Similar conclusions follow from considering shear strains in the other two planes: 
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    (6.3.6) 

 
The stiffness matrix is thus reduced, and there are only nine independent elastic constants: 
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These equations can be inverted to get, introducing elastic constants E,   and G  in place 
of the sSij ' : 

 





































































































6

5

4

3

2

1

12

13

23

32

23

1

13

3

32

21

12

3

31

2

21

1

6

5

4

3

2

1

2

1
00000

0
2

1
0000

00
2

1
000

000
1

000
1

000
1





















G

G

G

EEE

EEE

EEE

           (6.3.8) 

 
The nine independent constants here have the following meanings: 
 

iE  is the Young’s modulus (stiffness) of the material in direction 3,2,1i ; for example, 

111  E  for uniaxial tension in the direction 1. 
 

ij  is the Poisson’s ratio representing the ratio of a transverse strain to the applied strain 

in uniaxial tension; for example, 1212 /   for uniaxial tension in the direction 1. 
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ijG  are the shear moduli representing the shear stiffness in the corresponding plane; for 

example, 12G  is the shear stiffness for shearing in the 1-2 plane. 
 
If the 1-axis has long fibres along that direction, it is usual to call 12G  and 13G  the axial 

shear moduli and 23G  the transverse (out-of-plane) shear modulus. 

 
Note that, from symmetry of the stiffness matrix, 
 

121212131313232323 ,, EEEEEE          (6.3.9) 

 
An important feature of the orthotropic material is that there is no shear coupling with 
respect to the material axes.  In other words, normal stresses result in normal strains only 
and shear stresses result in shear strains only. 
 
Note that there will in general be shear coupling when the reference axes used, zyx ,, , 
are not aligned with the material directions 3,2,1 .  For example, suppose that the yx   
axes were oriented to the material axes as shown in Fig. 6.3.5.  Assuming that the 
material constants were known, the stresses and strains in the constitutive equations 6.3.8 
can be transformed into xyxx  , , etc. and xyxx  , , etc. using the strain and stress 

transformation equations.  The resulting matrix equations relating the strains xyxx  ,  to 

the stresses xyxx  ,  will then not contain zero entries in the stiffness matrix, and normal 

stresses, e.g. xx , will induce shear strain, e.g. xy , and shear stress will induce normal 

strain. 
 

 
 

Figure 6.3.5: reference axes not aligned with the material directions 
 
 
6.3.3 Transversely Isotropic Linear Elasticity 
 
A transversely isotropic material is one which has a single material direction and whose 
response in the plane orthogonal to this direction is isotropic.  An example is shown in 
Fig. 6.3.6, which again shows a glass-fibre composite material with aligned fibres, only 
now the cross-sectional shapes of the fibres are circular.  The characteristic material 
direction is z  and the material is isotropic in any plane parallel to the yx   plane.  The 
material properties are the same in all directions transverse to the fibre direction. 
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Figure 6.3.6: a transversely isotropic material 
 
This extra symmetry over that inherent in the orthotropic material reduces the number of 
independent elastic constants further.  To see this, consider an element of transversely 
isotropic material subjected to a normal strain  xx 1  only of magnitude  , Fig. 

6.3.7a, and also a normal strain  yy 2  of the same magnitude,  , Fig. 6.3.7b.  The 

yx   plane is the plane of isotropy. 
 

 
 
Figure 6.3.7: elements of a transversely isotropic material undergoing normal strain 

in the plane of isotropy 
 
From Eqns. 6.3.7, the stresses induced by a strain  1  only are 
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                      (6.3.10) 

 
The stresses induced by the strain  2  only are (the prime is added to distinguish these 
stresses from those of Eqn. 6.3.10) 
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           (6.3.11) 

 
Because of the isotropy, the )(1 xx   due to the 1  should be the same as the 

)(2 yy   due to the 2 , and it follows that 2211 CC  .  Further, the )(3 zz   should 

be the same for both, and so 3231 CC  . 
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Further simplifications arise from consideration of shear deformations, and rotations 
about the material axis, and one finds that 5544 CC   and 121166 CCC  . 

 
The stiffness matrix is thus reduced, and there are only five independent elastic constants: 
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with ‘3’ being the material direction.  These equations can be inverted to get, introducing 
elastic constants E,   and G  in place of the sSij ' . One again gets Eqn. 6.3.8, but now 
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              (6.3.14) 

 
with, due to symmetry, 
 

13 1 31 3/ /E E                                                  (6.3.15) 

 
Eqns. 6.3.13-15 seem to imply that there are 6 independent constants; however, the 
transverse modulus 12G  is related to the transverse Poisson ratio and the transverse 

stiffness through (see Eqn. 6.1.5, and 6.3.20 below, for the isotropic version of this 
relation) 
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These equations are often expressed in terms of “a” for fibre (or “a” for axial) and “t” for 
transverse: 
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6.3.4 Isotropic Linear Elasticity 
 
An isotropic material is one for which the material response is independent of orientation.  
The symmetry here further reduces the number of elastic constants to two, and the 
stiffness matrix reads  
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These equations can be inverted to get, introducing elastic constants E,   and G , 
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with 
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
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    (6.3.20) 

 
which are Eqns. 6.1.8 and 6.1.5. 
 
Eqns. 6.3.18 can also be written concisely in terms of the engineering constants E,   and 
G  with the help of the Lamé constants,   and  : 
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with 
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         (6.3.22) 

 
 
6.3.5 Problems 
 
1. A piece of orthotropic material is loaded by a uniaxial stress 1  (aligned with the 

material direction ‘1’).  What are the strains in the material, in terms of the 
engineering constants? 

 
2. A specimen of bone in the shape of a cube is fixed and loaded by a compressive stress 

MPa1  as shown below.  The bone can be considered to be orthotropic, with 
material properties 
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What are the stresses and strains which arise from the test according to this model (the 
bone is compressed along the ‘1’ direction)? 

 

 
 
3. Consider a block of transversely isotropic material subjected to a compressive stress 

p1  (perpendicular to the material direction) and constrained from moving in the 

other two perpendicular directions (as in Problem 2).  Evaluate the stresses 2  and 

3  in terms of the engineering constants ft EE ,  and ft  , . 

 
4. A strip of skin is tested in biaxial tension as shown below.  The measured stresses and 

strains are as given in the figure.  The orientation of the fibres in the material is later 
measured to be o20 .   

 
(a) Calculate the normal stresses along and transverse to the fibres, and the 

corresponding shear stress. (Hint: use the stress transformation equations.) 
(b) Calculate the normal strains along and transverse to the fibres, and the 

corresponding shear strain. (Hint: use the strain transformation equations.) 
(c) Assuming the material to be orthotropic, determine the elastic constants of the 

material (assume the stiffness in the fibre direction to be five times greater than 
the stiffness in the transverse direction). Note: because the material is thin, one 
can take 3 4 5 0     . 

(d) Calculate the magnitude and orientations of the principal normal stresses and 
strains. (Hint: the principal directions of stress are where there is zero shear 
stress.) 

(e) Do the principal directions of stress and strain coincide? 
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5. A biaxial test is performed on a roughly planar section of skin (thickness 1mm) from 
the back of a test-animal.  The test axes (x and y) are aligned such that deformation is 
induced in the skin along the spinal direction and transverse to this direction, under 
the assumption that the fibres are oriented principally in these directions.  However, it 
is found during the experiment that shear stresses are necessary to maintain a biaxial 
deformation state.  Measured stresses are 

kPa1,kPa2,kPa5  xyyyxx   

Determine the in-plane orientation of the fibres given the data kPa10001 E , 

kPa5002 E , kPa5006 G , 2.021  . 

[Hint: derive an expression for xy  involving   only, where   is the inclination of 

the material axes from the yx   axes] 
 
 
 
 
 
 
 
 


