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5.2 Plasticity I: Hypoelastic-Plastic Models 
 
The two main types of classical plasticity model for large strains are the hypoelastic-
plastic model and the hyperelastic-plastic model.  The first of these is discussed in this 
section. 
 
 
5.2.1 Hypoelasticity 
 
In the hypoelastic-plastic models of plasticity, the elastic response is assumed to be 
hypoelastic.  As discussed in §4.1.4, hypoelastic materials are characterised by 
constitutive relations of the form  
 

),( dσσ f=&                                                      (5.2.1) 
 
and, in mutiaxial problems, this implies that the response cannot be expressed in terms of 
an elastic strain energy function.  Thus the response is path-dependent and dissipation 
may occur even though the material is supposed to be elastic.  However, the idea with the 
hypoelastic-plastic models is that the elastic strains are assumed to be relatively small so 
that any error in the conservation of energy is very small, and so can be neglected. 
 
The stress-rate σ&  in the hypoelastic equation 5.2.1 must be objective.  Thus the material 
derivative of the Cauchy stress can not be used, but any of the many objective rates, for 
example the Jaumann, Green-Naghdi, Truesdell, etc., can be used.   
 
A large class of hypoelastic materials is encompassed in the linear relation between  
objective stress-rate and the rate of deformation:  
 

dCσ :∇∇ =                                                      (5.2.2) 
 
where ∇σ  is an objective stress rate and ∇C  is the corresponding fourth order tensor of 
elastic moduli, which may itself depend on the stress, in which case it must be an 
objective function of the stress.  For a given finitely deformed state, the (small) 
increments in stress and strain are linearly related and are recovered upon unloading.  
However, for finite deformations, the work done in a closed path may not be zero. 
 
The elastic modulus tensor ∇C  is also called the tangent modulus.  It possesses the 
minor symmetries due to the symmetry of d and ∇σ .  It is usually assumed to possess also 
the major symmetries. 
 
Example 
 
Consider the following hypoelastic constitutive equation: 
 

dCσ :JJ σ=∇                                                      (5.2.3) 
 
where J∇σ  is the Jaumann stress-rate, Eqn. 3.5.20, σwwσσ +−& .  The Truesdell stress-
rate T∇σ , defined by Eqn. 3.5.22, ( )σdσllσσ trT +−−& , is then 
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where σddσdC +=:ˆ .  Thus 5.2.3 can be expressed as dCσ :TT σ=∇  with the Truesdell 
tangent modulus given by IσCC ⊗+− ˆJσ . 
 
It is interesting to note that, if JσC  is constant, then T∇σ  is not.  Further, if JσC  has the 
major symmetries, then T∇σ  does not (since Iσ⊗  does not).  For this reason one often 
uses the Kirchhoff stress στ J=  rather than the Cauchy stress.  For example, the Jaumann 
rate of the Kirchhoff stress is τwwτττ +−=∇ &J .  Then, with )(tr dJJ =& , 
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Now if  TσC  has the major symmetries, then so does JτC . 
 
 
5.2.2 Hypoelastic – Plastic Model 
 
Additive Decomposition of the Rate of deformation 
 
The rate of deformation is now decomposed additively into elastic and plastic parts 
according to 
 

pe ddd +=                                                       (5.2.6)  
 
The elastic response is then 
 

( )p
e ddCσ −=∇ :σ                                                  (5.2.7) 

 
The yield condition is 
 

( ) 0, =ασf                                                       (5.2.8) 
 
where α  represents any other variable(s) besides σ  upon which f depends.   
 
The flow rule is 
 

( )ασGd ,λ&=p                                                  (5.2.9) 
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The tensor G is usually expressed in the form ( ) σασG ∂∂= /,g , where g is the plastic 
potential; λ  is the plastic multiplier.  For associative flow-rules, gf = .  The variables α  
are assumed to follow an evolution law of the form 
 

 ( )ασAα ,λ&& =                                                (5.2.10) 
 
The loading and unloading conditions may be expressed as 
 

0,0,0 =≤≥ ff λλ &&                                         (5.2.11) 
 

These are known as the Kuhn-Tucker conditions.  The first of these states that the 
plastic multiplier rate is non-negative; for plastic loading, 0>λ& , otherwise 0=λ& .  The 
second states that the stress must lie on or inside the yield surface.  The last condition 
assures that the stress state remains on the yield surface during plastic flow.  This last 
condition can also be expressed in rate form, 0=f& .  This is known as the consistency 
condition: 
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Isotropic Materials 
 
From the objectivity requirement, the yield function ( )ασ,f  in Eqn. 5.2.8 must be an 
objective scalar function of σ .  This implies that f must be a function only of the 
invariants of σ .  Thus the form ( )σf  necessarily represents the yield function of an 
isotropic material.  For anisotropic materials, one must use a different stress measure, for 
example the yield function could be expressed in term of the PK2 stress, ( ) 0=Sf . 
 
Consider then an isotropic material, with ( )321 ,, IIIff = , where iI  are the invariants of 
σ .  Then it can be shown that {▲Problem 1} 
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that is, the tensors σ  and σ∂∂ /f  are coaxial. 
 
Consider now a formulation in terms of the Jaumann stress-rate.  From 5.2.13, it follows 
that {▲Problem 2} 
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The consistency condition 5.2.12 can now be expressed in terms of the Jaumann stress 
rate: 
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The plastic multiplier can now be solved for, using the hypoelastic relation 5.2.7, the flow 
rule 5.2.9, the evolution equation 5.2.10 and 5.2.15 {▲Problem 3}: 
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Substituting this expression into the flow rule 5.2.9 and using the hypoelastic relation 
5.2.7 then leads to {▲Problem 4} 
 

( )

GC
σ

A
α

C
σ

GC
CCdCσ

:::

::
,:

J
e

J
e

J
e

J
e

JJJ

ff

f

σ

σσ

σσσ

∂
∂

+
∂
∂

−

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⊗
−==∇                   (5.2.17) 

 
The tensor JσC  is the elasto-plastic tangent modulus.  It consists of an elastic 
component J

e
σC  and a component which results from plastic flow. 

 
When the flow is associative, so that σG ∂∂= /f , the elasto-plastic modulus possesses 
the major symmetries.  The plasticity equations can also be based upon other stress-rates; 
for example, the Truesdell stress-rate.  For the same reasons as discussed earlier, although 

JσC  has the major symmetries for associative flow rules, the Truesdell modulus will not.  
If, however, the equations 5.2.6-17 are formulated in terms of the Kirchhoff stress, then 
the Truesdell modulus will possess the major symmetries (in fact, all the relevant relations 
above are valid for the Kirchhoff stress, with σ  simply being replaced by τ ).  Note that, 
if the elastic strains are small and plastic deformations are isochoric (volume preserving), 
then 1≈J  and στ ≈ . 
 
Small Strains 
 
In the case of small strains, in the above relations one replaces d with ε&  and decomposes 
the small strain rate according to pe εεε &&& += .  The stress rate is the time derivative of the 
Cauchy stress, since objective stress-rates are not now a consideration.  The hypoelastic 
relation is ( )pεεCσ &&& −= :  and the remaining relations follow, for example the elasto-
plastic tangent modulus is given by 5.2.17b with σ

eC  replaced with the small-strain elastic 
modulus tensor C.  The small-strain formulation is valid for anisotropic elastic moduli. 
 
 
5.2.3 J2 Flow Theory 
 
In the J2 Flow Theory, one assumes the material is isotropic, plastic flow is independent 
of the hydrostatic pressure, plastic flow is incompressible and the yield surface used is the 
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Von Mises yield surface.  An effective stress is used to generalise the uniaxial behaviour 
to multiaxial stress states. 
 
First to be examined is the isotropic hardening model. 
 
Isotropic Hardening 
 
It is useful to express the equations 5.2.6-17 now in terms of the Kirchhoff stress and the 
Jaumann stress-rate.  In that case, one again has Eqn. 5.2.6, pe ddd += , with the 
hypoelastic Eqn. 5.2.7 now reading 
 

( )pJ
e

J ddCτ −=∇ :τ                                           (5.2.18) 
 
The Von Mises yield function can be expressed as 
 

( ) 0:3, 2
3

2 =−=−= YYJf ssατ                                   (5.2.19) 
 
where 2J  is the second invariant of the deviatoric Kirchhoff stress and τs dev= .  The 

term ss :2
3  acts as an effective stress σ̂ . 

 
The (associative) flow rule 5.2.9 can be expressed as (see the Appendix to this section for 
details of the differentiation involved here) 
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The only variable α  necessary in the model is the scalar accumulated effective plastic 
strain: 
 

ppppppp ddddtd εε :
3
2ˆ,ˆˆˆ,ˆ ===≡ ∫∫ εεεεεα &              (5.2.21) 

 
The proposed evolution law for α  is simply (Eqn. 5.2.10 with the function 1=A ) 
 

( )pελα &&& ˆ==                                                    (5.2.22) 
 
With the definition of the plastic modulus being 
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the consistency condition 5.2.12 is, from 5.2.19, 
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The plastic multiplier rate is now given by Eqn. 5.2.16, 
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Finally, the elasto-plastic tangent modulus, Eqn. 5.2.17, is 
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It is useful to decompose the response into volumetric and deviatoric components.  First 
express the elastic moduli as in Eqns. 4.1.19, 
 

⎥⎦
⎤

⎢⎣
⎡ ⊗−+⊗= IIIIC

3
12 IμκτJ

e                                       (5.2.27) 

 
where nmjijnim eeee ⊗⊗⊗= δδI .  Note then that {▲Problem 5} 
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so that the tangent modulus 5.2.26b can be expressed as 
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Kinematic Hardening 
 
To accommodate kinematic hardening, one introduces as another hardening parameter the 
back stress α .  The yield condition 5.2.8 is now (in terms of the Kirchhoff stress) 
 

( ) ( ) ( ) ( ) 0ˆ:ˆ,, 2
3 =−−−= pp Yf εε αsαsατ                          (5.2.30) 

 
The flow rule is 
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The evolution equation for the back-stress is, for example using a linear hardening rule 
and the Jaumann stress-rate, 
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( )Gdα λ&cc pJ ==∇                                             (5.2.32) 
 
Note that the use of the Jaumann rate in the back-stress evolution law can lead to 
physically unreasonable stress oscillations in simple shear for large deformations 
(Nagtegaal and DeJong, 1981).  However, this behaviour is not significant provided the 
elastic strains are not too large.  A formulation based upon the Green-Naghdi strain can 
eliminate such stress oscillations (Johnson and Bammann, 1984). 
 
 
5.2.4 Drucker – Prager Model 
 
The yield criterion for a Drucker-Prager material is a modification of the Von Mises 
function so as to incorporate a plastic response due to a hydrostatic pressure: 
 

( ) 03, 12 =−+= YIJf αασ                                     (5.2.33) 
 
where Iσσ :tr1 ==I .  The associated flow rule is then 
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where σs dev= .  A suitable non-associative flow-rule might be 
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5.2.5 Elastic Moduli and Objectivity 
 
It was mentioned above that objectivity requires that a yield function of the form ( )σf  
necessarily represents an isotropic material.  Objectivity also places restrictions on the 
elastic moduli.  First, consider a constant modulus tensor J

e
τC .  Objectivity of a 

constitutive equation requires that 
 

( ) ( )** : eJ
e

J dCτ τ=∇                                              (5.2.36) 
 
or 

( )TT : QQdCQQτ eJ
e

J τ=∇                                         (5.2.37) 
 
so, using the index notation, 

 
( ) ( )[ ] ( )( )kl

e
pqrs

J
elsrkqjpiij

J QQQQ dCτ τ=∇                               (5.2.38) 
 
In order that objectivity be satisfied, one must have 
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( ) ( )pqrs
J

elsrkqjpiijkl
J

e QQQQ ττ CC =                                       (5.2.39) 
 
which shows that, if the modulus is constant, it must be isotropic. 
 
If one requires an anisotropic elastic modulus, one must use a formulation based on a 
configuration other than the spatial configuration, as discussed in the next sub-section. 
 
 
5.2.6 Corotational Stress Formulation 
 
The models discussed thus far have two drawbacks: 

1. the yield function must be an isotropic function of the stress 
2. if the elastic moduli are constant, then the moduli must be isotropic 

 
To overcome these restrictions to isotropic materials, one can formulate a plasticity model 
in terms of, for example, the corotational stress. 
 
The corotational stress is defined by Eqn. 3.5.12, 
 

σRRσ T
U =                                                     (5.2.40) 

 
Using a formulation based on the Kirchhoff stress, the corotational Kirchhoff stress is 
 

τRRτ T
U =                                                     (5.2.41) 

 
Recall from  §3.5.3 that the PK2 stress S is the pull-back of the Kirchhoff stress τ , 

( ) T1#1
*

−−− == τFFτS χ ; the corotational stress Uτ  is the pull-back of τ  but with respect 

to R and not F: ( ) T1#1
*U

−−
=

− == τRRττ RFχ . 
 
Define now the corotational rate of deformation: 
 

dRRd T
U =                                                     (5.2.42) 

 
with the decomposition 
 

pe
UUU ddd +=                                                   (5.2.43)  

 
Note that the corotational stress and rate of deformation are insensitive to rigid body 
rotations Q to the current configuration: 
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The corotational stress-rate is 
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RτRRτRτRRτRRτ &&&& TTTT
U ++==

⋅

                             (5.2.45) 
 
A rigid body rotation Q to the current configuration also results in {▲Problem 6} 
 

( ) U
*

U ττ && =                                                  (5.2.46) 
 
With the corotational stress-rate objective, the elastic response given by 
 

e
e UUU : dCτ τ=&                                                  (5.2.47) 

 
Note that rigid body rotations to the current configuration leave Uτ&  and e

Ud  unchanged 
and so τ

eUC  remains unchanged also.  Thus, unlike the isotropic restriction 5.2.39, there is 
no objectivity restriction here on the form of τ

eUC  and so τ
eUC  can represent in general an 

anisotropic response. 
 
Another way of looking at this is as follows: for an anisotropic material and using a fixed 
coordinate system, the components of an elastic modulus tensor C will in general change 
as the material rotates.  With the corotational formulation, however, the axes rotate with 
the material, and so material rotation has no effect on τ

eUC . 
 
The remainder of the formulation follows as before, for example the yield condition 
would be ( ) 0, UU =ατf  and the flow rule ( )UUU ,ατGd λ&=e .  The evolution law for the 

Uα  variable(s) is ( )UUU ,αAα τλ&& = .  Again, the scalar yield function may now represent 
in general anisotropic material behaviour.  The loading and unloading conditions are 
again given by 5.2.11. 
 
The plastic multiplier rate is now (see 5.2.16) 
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and  
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5.2.7 Problems 
 
1. The derivatives of the invariants of the stress tensor are (see Eqn. 1.11.33) 
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Use these relations to show that, for the yield function ( )321 ,, IIIff = , the tensors 
σ  and σ∂∂ /f  are coaxial. 

2. Use the fact that σ  and σ∂∂ /f  are coaxial, and Eqn. 1.9.3h, 
( ) ( ) ( ) BACCABBCA ::: TT == ,  to show that 
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where σwwσσσ +−=∇ &J . 
3. Derive Eqn. 5.2.16 
4. Use the index notation to verify that 

( ) ( ) ( ) dCAGCGdCAC ::::::: ⊗=  
where GdA ,,  are second order tensors and C is a fourth-order tensor.  Hence 
derive the elasto-plastic modulus 5.2.17b. 

5. Use the relations 1.9.62 and 1.9.64 to show that, for an arbitrary tensor A, 
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τC  given by 5.2.27.  Hence, using 1.9.31, show that, for a deviatoric tensor A, 

AAACA

AAC

:2::

2:

μ

μ
τ

τ

=

=
J

e

J
e  

Finally, use 5.2.20, 
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6. The application of a rigid body rotation Q to the current configuration results in a 

change to the corotational stress rate 5.2.45, 
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Use the relation 0QQQQQQ =+=
⋅

&& TTT  to show that ( ) U
T*

U ττRRτ && ==
⋅
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5.2.8 Appendix to §5.2 
 
Differentiation of the Von Mises Yield Function 
 
The Von Mises yield criterion is 02 =−= kJf  where ijij ssJ 2

1
2 = .  Using the product 

rule of differentiation, in index  notation: 
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In tensor notation: 
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