4.5 Material Anisotropy

4.5.1 Material Symmetry

The isotropic material was defined as one whose material response was unaffected by rigid body rotations of the reference configuration. Other material symmetries are possible; to generalise the notion, instead of considering orthogonal transformations, consider an arbitrary deformation \mathbf{F}_{0} of the reference configuration S_{0} bringing it to a new configuration S^{\diamond}, Fig. 4.5.1 (compare with the isotropic case, Fig. 2.8.6).

Figure 4.5.1: a deformation of the reference configuration
Considering the Cauchy-elastic material, if the deformation \mathbf{F}_{0} has no effect on the response of the material, then

$$
\begin{equation*}
\boldsymbol{\sigma}\left(\mathbf{F}^{\bullet}\right)=\boldsymbol{\sigma}(\mathbf{F}) \quad \rightarrow \quad \boldsymbol{\sigma}\left(\mathbf{F F}_{0}^{-1}\right)=\boldsymbol{\sigma}(\mathbf{F}) \tag{4.5.1}
\end{equation*}
$$

When $\mathbf{F}_{0}=\mathbf{Q}$, one has the isotropic material. Setting $\mathbf{G}=\mathbf{F}_{0}^{-1}, 4.5 .1$ can be cast in the most usual form:

$$
\sigma(\mathbf{F})=\sigma(\mathbf{F G})
$$

Note that the restriction $\operatorname{det} \mathbf{G}= \pm 1$ is assumed, since otherwise arbitrary dilatations could occur with no change in material response, which seems physically unreasonable.

Note that the set of all tensors \mathbf{G} which satisfy 4.5 .2 forms a group (see the Appendix to this Chapter, §4.A.2) and hence is called the symmetry group of the material (with respect to the configuration S_{0}).

Apart from isotropy, the two most important practical cases of material symmetry are transverse isotropy and orthotropy.

4.5.2 Transverse Isotropy

Consider first the transversely isotropic material. Such a material has a single preferred direction, defined by a unit vector \mathbf{a}_{0} in the reference configuration. Such a vector is illustrated in Fig. 4.5.2, showing also the unit vectors $\hat{\mathbf{n}}_{2}, \hat{\mathbf{n}}_{3}$ completing an orthonormal set. The symmetry group of the transversely isotropic material is the set of orthogonal tensors \mathbf{Q} which transform the set $\left\{\mathbf{a}_{0}, \mathbf{n}_{2}, \mathbf{n}_{3}\right\}$ into the new orthonormal set $\left\{ \pm \mathbf{a}_{0}, \mathbf{n}_{2}^{\prime}, \mathbf{n}_{3}^{\prime}\right\}$. In particular,

$$
\begin{equation*}
\mathbf{Q a} \mathbf{a}_{0}= \pm \mathbf{a}_{0} \tag{4.5.3}
\end{equation*}
$$

In order to ensure that the sense of $\mathbf{Q a} \mathbf{a}_{0}$ is immaterial, it is best to introduce the structural tensor $\mathbf{a}_{0} \otimes \mathbf{a}_{0}$, which transforms as the axes change according to

$$
\begin{equation*}
\mathbf{Q} \mathbf{a}_{0} \otimes \mathbf{Q} \mathbf{a}_{0}= \pm \mathbf{a}_{0} \otimes \pm \mathbf{a}_{0} \tag{4.5.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{Q}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right) \mathbf{Q}^{\mathrm{T}}=\mathbf{a}_{0} \otimes \mathbf{a}_{0} \tag{4.5.5}
\end{equation*}
$$

Figure 4.5.2: an orthonormal set of vectors
The strain energy can now be taken to be a function of \mathbf{C}, as in the isotropic case, and $\mathbf{a}_{0} \otimes \mathbf{a}_{0}$, which characterises the structure of the material:

$$
\begin{equation*}
W=W\left(\mathbf{C}, \mathbf{a}_{0} \otimes \mathbf{a}_{0}\right) \tag{4.5.6}
\end{equation*}
$$

Allowing for transformations of the undeformed configuration,

$$
\begin{equation*}
W\left(\mathbf{C}, \mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)=\mathbf{S}\left(\mathbf{Q C} \mathbf{Q}^{\mathrm{T}}, \mathbf{Q} \mathbf{a}_{0} \otimes \mathbf{a}_{0} \mathbf{Q}^{\mathrm{T}}\right) \tag{4.5.7}
\end{equation*}
$$

with \mathbf{Q} here restricted to the symmetry group defined by 4.5.3. Then W is an isotropic scalar function of two symmetric tensors and so, from Table 4.A.1, takes the form

$$
\begin{align*}
W=W(\operatorname{tr} \mathbf{C}, & \operatorname{tr} \mathbf{C}^{2}, \\
& \operatorname{tr} \mathbf{C}^{3}, \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right), \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}, \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{3} \tag{4.5.8}\\
& \left.\operatorname{tr} \mathbf{C}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right), \operatorname{tr} \mathbf{C}^{2}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right), \operatorname{tr} \mathbf{C}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}, \operatorname{tr} \mathbf{C}^{2}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}\right)
\end{align*}
$$

Since $\{\boldsymbol{\Delta}$ Problem 1\}

$$
\begin{align*}
\operatorname{tr}(\mathbf{a} \otimes \mathbf{a})=1, & \operatorname{tr}(\mathbf{C}(\mathbf{a} \otimes \mathbf{a}))=\mathbf{a C a}, \quad \operatorname{tr}\left(\mathbf{C}^{2}(\mathbf{a} \otimes \mathbf{a})\right)=\mathbf{a} \mathbf{C}^{2} \mathbf{a} \tag{4.5.9}\\
& \mathbf{a} \otimes \mathbf{a}=(\mathbf{a} \otimes \mathbf{a})^{2}=(\mathbf{a} \otimes \mathbf{a})^{3}
\end{align*}
$$

one arrives at the representation

$$
\begin{equation*}
W=W\left(I_{1}(\mathbf{C}), I_{2}(\mathbf{C}), I_{3}(\mathbf{C}), I_{4}\left(\mathbf{C}, \mathbf{a}_{0}\right), I_{5}\left(\mathbf{C}, \mathbf{a}_{0}\right)\right) \tag{4.5.10}
\end{equation*}
$$

where the fourth and fifth scalar (pseudo-) invariants I_{4}, I_{5} are defined by

$$
\begin{equation*}
I_{4}=\mathbf{a C a}, \quad I_{5}=\mathbf{a C}^{2} \mathbf{a} \tag{4.5.11}
\end{equation*}
$$

Note also that, from the definition of the stretch, Eqn. 2.2.17,

$$
\begin{equation*}
I_{4}=\mathbf{a}_{0} \mathbf{C} \mathbf{a}_{0}=\lambda_{\mathbf{a}}^{2} \tag{4.5.12}
\end{equation*}
$$

where λ_{a} is the stretch of the unit line element \mathbf{a}_{0}.
If the preferred direction is \mathbf{e}_{3}, then the fourth and fifth invariants in terms of components are

$$
\begin{align*}
& I_{4}=\mathbf{a}_{0} \mathbf{C} \mathbf{a}_{0}=C_{33} \tag{4.5.13}\\
& I_{5}=\mathbf{a}_{0} \mathbf{C}^{2} \mathbf{a}_{0}=C_{13}^{2}+C_{23}^{2}+C_{33}^{2}
\end{align*}
$$

in which case the five invariants can be taken as $\left\{I_{1}, I_{2}, I_{3}, C_{33}, C_{13}^{2}+C_{23}^{2}\right\}$.
Using the relations $\{\boldsymbol{\Delta}$ Problem 2\}

$$
\begin{equation*}
\frac{\partial I_{4}}{\partial \mathbf{C}}=\mathbf{a}_{0} \otimes \mathbf{a}_{0}, \quad \frac{\partial I_{5}}{\partial \mathbf{C}}=\mathbf{a}_{0} \otimes \mathbf{C} \mathbf{a}_{0}+\mathbf{a}_{0} \mathbf{C} \otimes \mathbf{a}_{0} \tag{4.5.14}
\end{equation*}
$$

the PK2 stresses for a hyperelastic material are then

$$
\begin{align*}
\mathbf{S} & =2 \sum_{i=1}^{5} \frac{\partial W\left(\mathbf{C}, \mathbf{a}_{0}\right)}{\partial I_{i}} \frac{\partial I_{i}}{\partial \mathbf{C}} \\
= & 2\left[\left(\frac{\partial W}{\partial I_{1}}+I_{1} \frac{\partial W}{\partial I_{2}}\right) \mathbf{I}-\frac{\partial W}{\partial I_{2}} \mathbf{C}+I_{3} \frac{\partial W}{\partial I_{3}} \mathbf{C}^{-1}\right. \tag{4.5.15}\\
& \left.\quad+\frac{\partial W}{\partial I_{4}} \mathbf{a}_{0} \otimes \mathbf{a}_{0}+\frac{\partial W}{\partial I_{5}}\left(\mathbf{a}_{0} \otimes \mathbf{C} \mathbf{a}_{0}+\mathbf{a}_{0} \mathbf{C} \otimes \mathbf{a}_{0}\right)\right]
\end{align*}
$$

Let \mathbf{a} be a unit vector in the current configuration, in the direction of $\mathbf{F a} \mathbf{a}_{0}$, that is,

$$
\begin{equation*}
\lambda_{\mathbf{a}} \mathbf{a}=\mathbf{F a} \mathbf{a}_{0} \tag{4.5.16}
\end{equation*}
$$

Then, using Eqn. 3.5.7, $\boldsymbol{\sigma}=J^{-1} \mathbf{F S F}^{\mathrm{T}}$, with $\mathbf{F I F}^{\mathrm{T}}=\mathbf{b}, \mathbf{F C F}^{\mathrm{T}}=\mathbf{b}^{2}$ (see Eqn.2.2.14), $\mathbf{F C}^{-1} \mathbf{F}^{\mathbf{T}}=\mathbf{I}$ and noting that \mathbf{C} and \mathbf{b} have the same principal invariants, 4.5.13 becomes

$$
\begin{align*}
\boldsymbol{\sigma}=2 J^{-1}\left[I_{3} \frac{\partial W}{\partial I_{3}} \mathbf{I}+\left(\frac{\partial W}{\partial I_{1}}\right.\right. & \left.+I_{1} \frac{\partial W}{\partial I_{2}}\right) \mathbf{b}-\frac{\partial W}{\partial I_{2}} \mathbf{b}^{2} \tag{4.5.17}\\
& \left.+I_{4} \frac{\partial W}{\partial I_{4}} \mathbf{a} \otimes \mathbf{a}+I_{4} \frac{\partial W}{\partial I_{5}}(\mathbf{a} \otimes \mathbf{b a}+\mathbf{a b} \otimes \mathbf{a})\right]
\end{align*}
$$

Using the Cayley-Hamilton theorem allows one to re-write the Cauchy stress as

$$
\begin{align*}
\boldsymbol{\sigma}=2 J^{-1}\left[\left(I_{2} \frac{\partial W}{\partial I_{2}}+I_{3} \frac{\partial W}{\partial I_{3}}\right)\right. & \mathbf{I}+\frac{\partial W}{\partial I_{1}} \mathbf{b}-I_{3} \frac{\partial W}{\partial I_{2}} \mathbf{b}^{-1} \tag{4.5.18}\\
& \left.+I_{4} \frac{\partial W}{\partial I_{4}} \mathbf{a} \otimes \mathbf{a}+I_{4} \frac{\partial W}{\partial I_{5}}(\mathbf{a} \otimes \mathbf{b a}+\mathbf{a b} \otimes \mathbf{a})\right]
\end{align*}
$$

Expressing the scalar invariants in terms of \mathbf{b} rather than \mathbf{C}, the coefficients of the tensors in 4.5.17-18 are functions of the set

$$
\begin{equation*}
\left\{\operatorname{trb}, \operatorname{trb}^{2}, \operatorname{trb}^{3}, \lambda_{\mathbf{a}}^{2} \mathbf{a} \otimes \mathbf{a}, \lambda_{\mathbf{a}}^{2} \mathbf{a b a}\right\} \tag{4.5.19}
\end{equation*}
$$

Transversely Isotropic Materials with Constraints

For an incompressible material, $I_{3}=1$, and, analogous to 4.2.40, the strain energy takes the form

$$
\begin{equation*}
W\left(I_{1}(\mathbf{C}), I_{2}(\mathbf{C}), I_{4}\left(\mathbf{C}, \mathbf{a}_{0}\right), I_{5}\left(\mathbf{C}, \mathbf{a}_{0}\right)\right)-\frac{1}{2} p\left(I_{3}-1\right) \tag{4.5.20}
\end{equation*}
$$

For a material which is inextensible in the direction of \mathbf{a}_{0}, from 4.5.13, $I_{4}=0$, and the strain energy takes the form

$$
\begin{equation*}
W\left(I_{1}(\mathbf{C}), I_{2}(\mathbf{C}), I_{3}(\mathbf{C}), I_{5}\left(\mathbf{C}, \mathbf{a}_{0}\right)\right)-\frac{1}{2} q\left(I_{4}-1\right) \tag{4.5.21}
\end{equation*}
$$

4.5.3 Orthotropy

Consider now a material which is dependent on two characteristic directions, \mathbf{a}_{0} and \mathbf{b}_{0}; again the sense of these directions is immaterial. The strain energy is now of the form

$$
\begin{equation*}
W=W\left(\mathbf{C}, \mathbf{a}_{0} \otimes \mathbf{a}_{0}, \mathbf{b}_{0} \otimes \mathbf{b}_{0}\right) \tag{4.5.22}
\end{equation*}
$$

As isotropic scalar function of three symmetric tensors depends on the following traces (see Table 4.A.1)

$$
\begin{align*}
& \operatorname{tr} \mathbf{C}, \operatorname{tr} \mathbf{C}^{2}, \operatorname{tr} \mathbf{C}^{3} \\
& \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right), \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}, \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{3}, \operatorname{tr}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right), \operatorname{tr}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right)^{2}, \operatorname{tr}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right)^{3} \\
& \operatorname{trC}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right), \operatorname{tr} \mathbf{C}^{2}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right), \operatorname{trC}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}, \operatorname{tr} \mathbf{C}^{2}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2} \\
& \operatorname{trC}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right), \operatorname{trC} \mathbf{C}^{2}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right), \operatorname{trC}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right)^{2}, \operatorname{tr} \mathbf{C}^{2}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right)^{2} \\
& \operatorname{tr}\left(\mathbf{(a}_{0} \otimes \mathbf{a}_{0}\right)\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right), \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right), \\
& \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right)^{2}, \operatorname{tr}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)^{2}\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right)^{2} \\
& \operatorname{trC}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right)\left(\mathbf{b}_{0} \otimes \mathbf{b}_{0}\right) \tag{4.5.23}
\end{align*}
$$

Using 4.5.9 (see Eqn. 1.9.10e) this reduces to the set of nine invariants

$$
\begin{align*}
& \operatorname{tr} \mathbf{C}, \operatorname{tr} \mathbf{C}^{2}, \operatorname{tr} \mathbf{C}^{3} \\
& \mathbf{a}_{0} \mathbf{C} \mathbf{a}_{0}, \mathbf{a}_{0} \mathbf{C}^{2} \mathbf{a}_{0}, \mathbf{b}_{0} \mathbf{C} \mathbf{b}_{0}, \mathbf{b}_{0} \mathbf{C}^{2} \mathbf{b}_{0},\left(\mathbf{a}_{0} \cdot \mathbf{b}_{0}\right)^{2},\left(\mathbf{a}_{0} \cdot \mathbf{b}_{0}\right) \mathbf{a}_{0} \mathbf{C} \mathbf{b}_{0} \tag{4.5.24}
\end{align*}
$$

with $\mathbf{a}_{0} \mathbf{C b}=\mathbf{b}_{0} \mathbf{C a} \mathbf{a}_{0}$. The term $\mathbf{a}_{0} \cdot \mathbf{b}_{0}$ is the cosine of the angle between the two characteristic directions; this does not change during the deformation and so this term can be omitted, leaving

$$
\begin{equation*}
\operatorname{tr} \mathbf{C}, \operatorname{tr} \mathbf{C}^{2}, \operatorname{tr} \mathbf{C}^{3}, \mathbf{a}_{0} \mathbf{C a} \mathbf{a}_{0}, \mathbf{a}_{0} \mathbf{C}^{2} \mathbf{a}_{0}, \mathbf{b}_{0} \mathbf{C} \mathbf{b}_{0}, \mathbf{b}_{0} \mathbf{C}^{2} \mathbf{b}_{0},\left(\mathbf{a}_{0} \cdot \mathbf{b}_{0}\right) \mathbf{a}_{0} \mathbf{C} \mathbf{b}_{0} \tag{4.5.25}
\end{equation*}
$$

An orthotropic material is one for which \mathbf{a}_{0} and \mathbf{b}_{0} are perpendicular, $\mathbf{a}_{0} \cdot \mathbf{b}_{0}=0$, making the last term here zero. This also then defines a third preferred direction, \mathbf{c}_{0}, orthogonal to both \mathbf{a}_{0} and \mathbf{b}_{0}, which introduces extra terms $\mathbf{c}_{0} \mathbf{C c}_{0}, \mathbf{c}_{0} \mathbf{C}^{2} \mathbf{c}_{00}$. But

$$
\begin{align*}
\operatorname{tr} \mathbf{C} & =\mathbf{a}_{0} \mathbf{C} \mathbf{a}_{0}+\mathbf{b}_{0} \mathbf{C} \mathbf{b}_{0}+\mathbf{c}_{0} \mathbf{C} \mathbf{c}_{0} \\
\operatorname{tr} \mathbf{C}^{2} & =\mathbf{a}_{0} \mathbf{C}^{2} \mathbf{a}_{0}+\mathbf{b}_{0} \mathbf{C}^{2} \mathbf{b}_{0}+\mathbf{c}_{0} \mathbf{C}^{2} \mathbf{c}_{0} \tag{4.5.26}
\end{align*}
$$

so that $\mathbf{c}_{0} \mathbf{C} \mathbf{c}_{0}, \mathbf{c}_{0} \mathbf{C}^{2} \mathbf{c}_{0}$ are redundant. Finally, the strain energy is of the form

$$
\begin{equation*}
W=W\left(\operatorname{tr} \mathbf{C}, \operatorname{tr} \mathbf{C}^{2}, \operatorname{trC}^{3}, \mathbf{a}_{0} \mathbf{C} \mathbf{a}_{0}, \mathbf{a}_{0} \mathbf{C}^{2} \mathbf{a}_{0}, \mathbf{b}_{0} \mathbf{C} \mathbf{b}_{0}, \mathbf{b}_{0} \mathbf{C}^{2} \mathbf{b}_{0}\right) \tag{4.5.27}
\end{equation*}
$$

As before, the stresses in a hyperelastic material can now be obtained by differentiation.

4.5.4 Problems

1. Show that, for unit vector \mathbf{a},
(i) $(\mathbf{a} \otimes \mathbf{a})^{2}=\mathbf{a} \otimes \mathbf{a}$,
(ii) $\operatorname{tr}(\mathbf{a} \otimes \mathbf{a})=1$
(iii) $\operatorname{tr}(\mathbf{C}(\mathbf{a} \otimes \mathbf{a}))=\mathbf{a C a}$
(iv) $\operatorname{tr}\left(\mathbf{C}^{2}(\mathbf{a} \otimes \mathbf{a})\right)=\mathbf{a} \mathbf{C}^{2} \mathbf{a}$
2. Show that

$$
\frac{\partial I_{4}}{\partial \mathbf{C}}=\mathbf{a}_{0} \otimes \mathbf{a}_{0}, \quad \frac{\partial I_{5}}{\partial \mathbf{C}}=\mathbf{a}_{0} \otimes \mathbf{C} \mathbf{a}_{0}+\mathbf{a}_{0} \mathbf{C} \otimes \mathbf{a}_{0}
$$

3. Show that
(i) $\quad \mathbf{F}\left(\mathbf{a}_{0} \otimes \mathbf{a}_{0}\right) \mathbf{F}^{\mathrm{T}}=\lambda_{\mathbf{a}}^{2} \mathbf{a} \otimes \mathbf{a}$
(ii) $\quad \mathbf{F}\left(\mathbf{a}_{0} \otimes \mathbf{C} \mathbf{a}_{0}\right) \mathbf{F}^{\mathrm{T}}=\lambda_{\mathbf{a}}^{2} \mathbf{a} \otimes \mathbf{b a}$

For (ii), it might help to note the following relations (for vector \mathbf{b} and second-order tensors A, B):

$$
\begin{aligned}
(\mathbf{A b}) \mathbf{B} & =\mathbf{A}(\mathbf{b B}) \\
(\mathbf{A B}) \mathbf{b} & =\cdot \mathbf{A}(\mathbf{B} \mathbf{b}) \\
\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right) \mathbf{A}^{\mathrm{T}} & =\left(\mathbf{A} \mathbf{A}^{\mathrm{T}}\right) \mathbf{b}
\end{aligned}
$$

