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4.5 Material Anisotropy 
 
 
4.5.1 Material Symmetry 
 
The isotropic material was defined as one whose material response was unaffected by 
rigid body rotations of the reference configuration.  Other material symmetries are 
possible; to generalise the notion, instead of considering orthogonal transformations, 
consider an arbitrary deformation 0F  of the reference configuration 0S  bringing it to a 
new configuration ◊S , Fig. 4.5.1 (compare with the isotropic case, Fig. 2.8.6). 
 

 
 

Figure 4.5.1: a deformation of the reference configuration 
 
Considering the Cauchy-elastic material, if the deformation 0F  has no effect on the 
response of the material, then 
 

)()()()( 1
0 FσFFσFσFσ =→= −◊                                 (4.5.1) 

 
When QF =0 , one has the isotropic material.  Setting 1

0
−= FG , 4.5.1 can be cast in 

the most usual form: 
 

)()( FGσFσ =                                                  (4.5.2) 
 
Note that the restriction 1det ±=G  is assumed, since otherwise arbitrary dilatations 
could occur with no change in material response, which seems physically 
unreasonable. 
 
Note that the set of all tensors G which satisfy 4.5.2 forms a group (see the Appendix 
to this Chapter, §4.A.2) and hence is called the symmetry group of the material (with 
respect to the configuration 0S ). 
 
Apart from isotropy, the two most important practical cases of material symmetry are 
transverse isotropy and orthotropy. 
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4.5.2 Transverse Isotropy 
 
Consider first the transversely isotropic material.  Such a material has a single 
preferred direction, defined by a unit vector 0a  in the reference configuration.  Such a 
vector is illustrated in Fig. 4.5.2, showing also the unit vectors 32 ˆ,ˆ nn  completing an 
orthonormal set.  The symmetry group of the transversely isotropic material is the set  
of orthogonal tensors Q which transform the set { }320 ,, nna  into the new orthonormal 
set { }320 ,, nna ′′± .  In particular, 
 

  00 aQa ±=                                                    (4.5.3) 
 
In order to ensure that the sense of 0Qa  is immaterial, it is best to introduce the 
structural tensor 00 aa ⊗ , which transforms as the axes change according to 
 

  0000 aaQaQa ±⊗±=⊗                                         (4.5.4) 
 
or 

 
  ( ) 00

T
00 aaQaaQ ⊗=⊗                                         (4.5.5) 

 

 
 

Figure 4.5.2: an orthonormal set of vectors 
 
The strain energy can now be taken to be a function of C, as in the isotropic case, and 

00 aa ⊗ , which characterises the structure of the material: 
 

),( 00 aaC ⊗=WW                                                (4.5.6) 
 
Allowing for transformations of the undeformed configuration, 
 

),(),( T
00

T
00 QaQaQCQSaaC ⊗=⊗W                           (4.5.7) 

 
with Q here restricted to the symmetry group defined by 4.5.3.  Then W is an isotropic 
scalar function of two symmetric tensors and so, from Table 4.A.1, takes the form 
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Since  {▲Problem 1} 
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one arrives at the representation 
 

( ) ( ) ( ) ( ) ( )( )0504321 ,,,,,, aCaCCCC IIIIIWW =                    (4.5.10) 
 
where the fourth and fifth scalar (pseudo-) invariants 54 , II  are defined by 

 
aaCaCa 2

54 , == II                                        (4.5.11) 
 
Note also that, from the definition of the stretch, Eqn. 2.2.17, 
 

2
004 aCaa λ==I                                                 (4.5.12) 

 
where aλ  is the stretch of the unit line element 0a . 
 
If the preferred direction is 3e , then the fourth and fifth invariants in terms of 
components are 
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in which case the five invariants can be taken as { }2

23
2

1333321 ,,,, CCCIII + . 
 
Using the relations {▲Problem 2} 
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the PK2 stresses for a hyperelastic material are then 
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Let a be a unit vector in the current configuration, in the direction of 0Fa , that is, 
 

0Faaa =λ                                                 (4.5.16) 
 
Then, using Eqn. 3.5.7, T1FSFσ −= J , with bFIF =T , 2T bFCF =  (see Eqn.2.2.14), 

IFFC =− T1  and noting that C and b have the same principal invariants, 4.5.13 
becomes 
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      (4.5.17) 

 
Using the Cayley-Hamilton theorem allows one to re-write the Cauchy stress as 
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       (4.5.18) 

 
Expressing the scalar invariants in terms of b rather than C, the coefficients of the 
tensors in 4.5.17-18 are functions of the set 
 

{ }abaaabbb aa
2232 ,,tr,tr,tr λλ ⊗                                  (4.5.19) 

 
 
Transversely Isotropic Materials with Constraints 
 
For an incompressible material, 13 =I , and, analogous to 4.2.40, the strain energy 
takes the form  
 

( ) ( ) ( ) ( )( ) )1(
2
1,,,,, 3050421 −− IpIIIIW aCaCCC                   (4.5.20) 

 
For a material which is inextensible in the direction of 0a , from 4.5.13, 04 =I , and 
the strain energy takes the form 
 

( ) ( ) ( ) ( )( ) )1(
2
1,,,, 405321 −− IqIIIIW aCCCC                     (4.5.21) 
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4.5.3 Orthotropy 
 
Consider now a material which is dependent on two characteristic directions, 0a  and 

0b ; again the sense of these directions is immaterial.  The strain energy is now of the 
form 
 

),,( 0000 bbaaC ⊗⊗=WW                                      (4.5.22) 
 
As isotropic scalar function of three symmetric tensors depends on the following 
traces (see Table 4.A.1) 
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(4.5.23) 
 
Using 4.5.9 (see Eqn. 1.9.10e) this reduces to the set of nine invariants 
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with 0000 CabCba = .  The term 00 ba ⋅  is the cosine of the angle between the two 
characteristic directions; this does not change during the deformation and so this term 
can be omitted, leaving 
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32 ,,,,,tr,tr,tr CbababCbCbbaCaCaaCCC ⋅     (4.5.25) 

 
An orthotropic material is one for which 0a  and 0b  are perpendicular, 000 =⋅ba , 
making the last term here zero.  This also then defines a third preferred direction, 0c , 
orthogonal to both 0a  and 0b , which introduces extra terms 00

2
000 , cCcCcc .  But 
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so that 0

2
000 , cCcCcc  are redundant.  Finally, the strain energy is of the form 
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As before, the stresses in a hyperelastic material can now be obtained by 
differentiation. 
 
 
4.5.4 Problems 
 
1. Show that, for unit vector a, 

(i)    ( ) aaaa ⊗=⊗ 2 ,  (ii) ( ) 1tr =⊗ aa  
(iii) ( )( ) aCaaaC =⊗tr  (iv) ( )( ) aaCaaC 22tr =⊗  

2. Show that 
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3. Show that 
  (i)  ( ) aaFaaF a ⊗=⊗ 2T

00 λ  
  (ii)  ( ) baaFCaaF a ⊗=⊗ 2T

00 λ  
For (ii), it might help to note the following relations (for vector b and second-order 
tensors A, B): 
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