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4.2 Hyperelasticity 
 
The Hyperelastic material is examined in this section. 
 
 
4.2.1 Constitutive Equations 
 
The rate of change of internal energy W per unit reference volume is given by the stress 
power, which can be expressed in a number of different ways (see §3.7.6): 
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The internal energy is regarded as a function of a deformation variable.  For example, 
 
The change in energy is due to the deformation which takes place, so take W to be a 
function of, say, the deformation gradient )(tF , )(FW .  It is assumed that in the reference 
configuration the strain energy is zero, 0)( =IW , and that it grows with deformation, 

0)( ≥FW 1. 
 
The chain rule gives 
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From 4.2.1, 
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Since F and F&  can take on any value independent of the other, one must have 
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This is a constitutive equation relating the kinematic variables to the force variables.  
From 4.2.1, alternative forms are: 
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The procedure used in Eqns. 4.2.2-4 cannot be used for the stress power relation dσ :J  
since there is no function whose derivative is the rate of deformation.  Instead, use the 
relation 3.5.6, T1PFσ −= J , 4.2.4, FP ∂∂= /W , to get 
 

                                                 
1 and that it tends to infinity as the material is either compressed to a point, 0det →= FJ  or expanded to 
an infinite range, ∞→= FdetJ . 
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An alternative relation can be obtained by first deriving a relationship between the partial 
derivatives of the strain energy function with respect to the deformation gradient, 

ijFW ∂∂ / , and with respect to the right Cauchy-Green tensor, ijCW ∂∂ / .  Suppose first 
that the strain energy is a function of the deformation gradient: 
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The chain rule for ( ))(FCWW =  gives 
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With FFC T= , 
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so that (and using the fact that C is symmetric), 
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or 
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Now 4.2.6 can be re-written as 
 

T12 F
C

Fσ
∂
∂

= − WJ                                                 (4.2.12) 

 
Similarly, Eqn. 4.2.4 cab be re-written as 
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The Strain Energy and the Right Stretch Tensor 
 
The right stretch tensor can be expressed as UUC = , where U is the right stretch, or, 
since U is also symmetric, UUC T= .  One can see the similarity between this relation 
and the relation FFC T=  so, using the same arguments as given above, one has for 

( ))(UCWW = , (see 1.11.36) 
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Since U is symmetric, 
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showing that U and C∂∂ /W  are coaxial. 
 
 
4.2.2 Objectivity of the Constitutive Equations 
 
An observer transformation (see §2.8) results in QFF =*  and *CC = , so 

CCCC ∂∂=∂∂ /)(/)( ** WW , and, so, from 4.2.12, 
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which is the objectivity requirement for a spatial tensor and so this constitutive law 
satisfies the requirement of material frame-indifference, when W is a function of C.  This 
evidently holds true also when W is a function of E.  It does not, however, hold true in 
general when W is a function of F, as in the constitutive law  FFP ∂∂= /)(W .  However, 
with W a function of C, the constitutive equation 4.2.13 can be seen to be objective. 
 
The objective constitutive equations in this section are indicated by a box around them. 
 
 
4.2.3 Elasticity Tensors 
 
The total differential of the PK2 stress can be written as 
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where C  is the fourth-order tensor 
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and is a measure of the change in stress which occurs due to a change in strain.  It is 
called the elasticity tensor (in the material description) or the tangent modulus. 
 
Since S and E are symmetric, C  possesses the minor symmetries, ijlkjiklijkl CCC == , and 
so has 36 independent components.  However, if hyperelastic conditions hold, so that 
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and so C  possesses the major symmetries, klijijkl CC = , and only only 21 independent 
components. 
 
The rate form of the above equations is 
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or 
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4.2.4 A Note on the Strain Energy Function 
 
Some confusion can arise in expressions such as 
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As mentioned at the end of §1.11.5, one can either 
• use the energy function ),,,,,(** 332221131211 EEEEEEWW = , a function of 6 

independent variables, in which case 
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• use the energy function ),,,,,,,,( 333231232221131211 EEEEEEEEEWW = , a function of 9 

variables, not all of them independent, in which case  
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and the symmetry of W with respect to the strains, which must be assumed here, 
implies that the stress is also symmetric. 

 
 
4.2.5 Hyperelasticity with Constraints 
 
Consider a Hyperelastic material which is subject to the scalar constraint 
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Without the constraint, one has 
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The constitutive equation FP ∂∂= /W  can be derived from 4.2.26 when F&  is arbitrary.  
However, for the material with the constraint, the F&  cannot be “cancelled” out from each 
side; one has the conditions 
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In general then, 
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where α  is some arbitrary scalar.  The stress is therefore given by 
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and the rate of change of internal energy is 
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The strain energy is 
 

)()( FF αφ+W                                                (4.2.31) 
 
The second term here is evidently zero and so does not contribute to the strain energy.  
However, the stress is the derivative of the strain energy with respect to a kinematic 
quantity, and the derivative of this last term, the second term in 4.2.29, is not be zero.  
The scalar α  is, or determines the magnitude of, a workless reaction stress.  It ensures 
that the constraint is satisfied; it is not set a value in the constitutive equation, rather, it is 
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determined by  considering particular problems, through equilibrium and boundary 
conditions. 
 
For N constraints Nii K1,0)( ==Fφ , 4.2.29 generalises to 
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Incompressible Materials 
 
An incompressible material is one whose volume remains constant throughout a motion, 
and so has the following constraint: 
 

1det == FJ   or  0=J&                                        (4.2.33) 
 
From 1.11.34, T)(det/)(det −=∂∂ AAAA , one has T/ −= FF JddJ , which equals T−F  at 

1=J .  Thus the PK1 stresses can be written as 
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and the strain energy function is of the form 
 

( ) )1()( −− FF JpW                                             (4.2.35) 
 
with α−=p . 
 
Using 3.5.9, PFS 1−= , one also has 
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Using 2.5.20 and 2.5.18b, 
 

( ) ( ) CCECECFEFd &&&&& ::trtrtr 1
2
1111T −−−−− ===== JJJJJJ             (4.2.37) 

 
and the stress power is 
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consistent with 4.2.30. 
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The strain energy of 4.2.35 is expressed in terms of F.  This can be re-expressed in terms 
of C.  Since CCF IIIdetdet ===J , the incompressibility constraint can be 
expressed as 
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and the strain energy can be written as 
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The factor of 1/2 has been included so that the p in 4.2.35 is the same as the p in 4.2.40, 
since, from 1.11.33, 
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leading to the same expression for the PK2 stress as befoe, Eqn.4.2.36. 
 
Similarly, in terms of the Cauchy stress, one has{▲Problem 1} 
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Because of its role in this equation, the scalar  p is called the hydrostatic pressure. 
 
Inextensible Constraint 
 
Consider a material which is inextensible in a direction defined by a unit vector Â  in the 
reference configuration.  The constraint for this material is given by Eqn. 2.2.60, 
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The stress is then  
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Post-contracting with TF  (with 1=J ) then gives 
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For inextensibility in two directions, 
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one has the stress 
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4.2.6 Problems 
 
1. Use the equation  
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to show that the constitutive equation for an incompressible hyperelastic material 
can be written in terms of the Cauchy stress as 

IF
C
CFσ pW

−
∂

∂
= T)(2   

 


