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4.1 Elastic Solids 
 
In this section is given an overview of the common elasticity models.  
 
 
4.1.1 The Linear Elastic Solid 
 
The classical Linear Elastic model, or Hookean model, has the following linear 
relationship between stress and strain: 
 

mnijmnij C εσ =⋅= ,:εσ C                                     (4.1.1) 
 
where ε  is the small strain tensor, §2.7. 
 
Strain Energy 
 
In this purely mechanical theory of elastic materials, there is no dissipation of energy – all 
the energy of the loads is stored as elastic strain energy in the material as it deforms, and 
can be recovered. 
 
For the linear elastic material, the rate of deformation is equivalent to the rate of small-
strain, εd &= , so the strain-energy function can be written as 
 

εσ ddW :=                                                         (4.1.2) 
 
and the total energy stored per unit volume over the complete history of straining is 
 

∫= εσ dW :                                                         (4.1.3) 
 
nnd the stress can be written as 
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Reduction in the number of Independent Elastic Constants 
 
Since the stress and strain are symmetric, jiij σσ =  and nmmn εε = , the fourth-order 
elasticity tensor of stiffness coefficients contains the minor symmetries 1.9.65, 
 

ijlkjiklijkl CCC ==                                                   (4.1.5) 
 
and so the 81 coefficients reduce to 36 independent coefficients.  Further, since C  is 
independent of the strains, 
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and so 
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Now 
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and it follows that C  possesses the major symmetries: 
 

mnijijmn CC =                                                         (4.1.9) 
 
This reduces the number of independent elastic constants from 36 to 21.  
 
Problems involving Elastic Materials 
 
The six constitutive equations 4.1.1, together with the equations of motion and the 6 
kinematic relations relating the strains to the displacements, Eqn. 2.7.2, 

( ) 2/,, ijjiij uu +=ε , gives a set of 15 equations in the 15 unknowns: the six stress 
components, the six strain components and the three displacement components. 
 
To maintain a linear theory, the acceleration term in the equations of motion must be 
linear; this is achieved by supposing the displacement gradients to be small: 
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When this acceleration term is included, the problem is dynamic.  When the equations of 
equilibrium are used, the problem is static. 
 
Compatibility 
 
An alternative method of solution is to remove the displacements from the above system 
and solve only for the stresses and strains.  In this case the strain-displacement relations 
are replaced by  three compatibility equations, and there are then 12 equations in 12 
unknowns.  Once the system is solved, the displacements can be obtained from the strains 
by integration. 
 
The Isotropic Linear Elastic Solid 
 
When the material is isotropic, the constitutive equation holds in any coordinate system, 
 

mnijmnij C εσ ′=′                                                   (4.1.11) 
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and so the tensor of elastic constants is isotropic.  The most general fourth-order isotropic 
tensor takes the form 1.10.7, 
 

( ) ( )jminjnimmnijijmnC δδδδμδλδμλ ++=++⊗= ,IIC II            (4.1.12) 
 
with the fourth-order unit tensors given by 1.9.60, 
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which has only two independent material constants.  Since the strain is symmetric, one 
has 
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and the constitutive equation reduces to {▲Problem 1} 
 

( ) ijijkkij ee μδλσμλ 2,2tr +=+= εIεσ                       (4.1.15) 
 
and the two elastic constants μλ,  are called Lamé’s constants. 
 
Problems in Isotropic Elasticity 
 
The 15 equations mentioned earlier can be reduced by eliminating the strains from the 
constitutive equation and the kinematic equation, and then substituting the resultant 
expression for stress into the equations of motion, giving Navier’s equations 
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This set of three partial differential equations is appropriate for problems involving 
displacement boundary conditions. 
 
The Lame’s constants and the Young’s modulus and Poisson’s ratio are related through 
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The linear elastic constitutive equations in terms of the engineering constants reads 
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The Bulk Modulus 
 
The tensor of elastic constants can be written in the alternative forms 
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where the new constant introduced is the bulk modulus κ .  This last expression then 
leads to the alternative form of the constitutive relations, 
 

εIεσ dev2)tr( μκ +=                                         (4.1.20) 
 
This expression shows that the stress can be decomposed into a spherical component and 
a deviatoric component.  For a pure volume change, 0dev =ε , and there are no shear 
stresses, ( )Iσσ tr= ; the bulk modulus is thus a measure of the resistance of the material 
to volume changes.  
 
 
4.1.2 Geometrically Non-Linear Elastic Materials 
 
When the strains (displacement gradients) are not small, the behaviour of the material will 
inevitably be non-linear.  This is due to the geometric non-linearity of the kinematic 
strain-displacement relations, for example using the Green-Lagrange strains and the 
reference configuration, 
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The Kirchhoff Material 
 
The Kirchhoff material is an extension of the linear elastic model to the large strain range; 
the constitutive relation is a linear tensor relation, but non-linearities enter through ( )uE : 
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mnijmnij ECS == ,: ES C                                    (4.1.22) 

 
where S is the PK2 stress tensor and E is the Green-Lagrange strain.  Since both S and E 
are symmetric, the fourth-order tensor C  has the minor symmetries, jimnijmn CC =  and 

ijnmijmn CC = , and so has 36 independent coefficients.  Following the same arguments as 
before, one can define a strain energy function (per unit reference volume) 
 

ijij dESdWddW == ,: ES                                    (4.1.23) 
 
and the total energy stored per unit volume over the complete history of straining is 
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and the stress can be written as 
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Again, the existence of the strain energy function implies that the matrix of elastic 
coefficients only has 21 independent coefficients. 
 
When the Kirchhoff material is isotropic, the constitutive relation reduces further to 
 

( ) ijijkkij EES μδλμλ 2,2tr +=+= EIES                     (4.1.26) 
 
As mentioned in §2.7.2, the linear elastic model can not be used when there are large 
rigid body rotations, even if the displacement gradients are not large.  The Kirchhoff 
model can be used in these cases. 
 
 
4.1.3 Materially Non-Linear Elastic Materials 
 
An elastic material might also exhibit material non-linearity through a non-linear 
constitutive equation, for example the Cauchy stress might be some non-linear function of 
a strain measure, or of the deformation gradient: 
 

))(( tFfσ =                                                    (4.1.27) 
 
where f is some tensor function of the deformation gradient F.  This constitutive equation 
is called the Cauchy Elastic material model.  As can be seen, the stress is dependent on 
the current state only, and not on the path history, a requirement of elasticity.  However, 
the stress in the case of a Cauchy elastic material cannot in general be written in terms of 
a strain-energy function.  In other words, the work done might be path-dependent. 
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Objectivity Requirements 
 
The notion of objectivity was introduced in §2.8.  When formulating constitutive relations 
for materials, one must ensure that the principle of material objectivity(or the principle 
of material frame indifference) be satisfied.  This principle states that 
 

A constitutive law must be independent of the location of the observer (or frame of 
reference that is taken) 

 
This implies that two observers, even if in relative motion with respect to each other, 
observe the same stress in a given body.  Consider the Cauchy elastic material 4.1.27.  
The Cauchy stress is an objective tensor.  Referring to the example of Eqns. 2.8.47-50 in 
§2.8.4, objectivity requires that the constitutive relation be of the form 
 

( ) TRURfσ =                (4.1.28) 
 
The constitutive relation can also be written in terms of other stress measures.  For 
example, using ( ) TTTT RPURUPPFσ ===J , one has 
 

( ) 1-J UURfP =                                                (4.1.29) 
 
For the PK2 stress, one has T1 −−= σFFS J , so that 
 

( ) 11det -UUfUUS −=                                         (4.1.30) 
 
which does not depend on the rotation.  This last relation can also be written in the form  
 

( ) )(det 2/12/1
2

2/12/1 CgCCfCCS ≡= −−                             (4.1.31) 
 
This is clearly objective, since S and C are unaffected by an observer transformation,  

SS =*  and CC =* . 
 
 
4.1.4 Hypoelastic Materials 
 
A hypoelastic material is one whose constitutive law relates the rate of stress to the rate 
of deformation d.  This can be written in terms of the Cauchy stress as ),( dσσ f=& .  
Consider a simple one-dimensional linear model, 
 

dE=σ&                                                      (4.1.32) 
 
Since, in one-dimension, the stretch is dXdx /=λ , the rate of deformation is equivalent 
to the spatial velocity gradient l and the rate of change of a line element dx  is 

dxldtdxd =/)( , dividing through by dX  gives λλ /&=d  (see Eqn. 2.5.10), so that 
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This shows that the stress is clearly path-independent, depending only on the current 
stretch.  In fact, the stress can be written as the derivative of a strain energy function 
according to λσ ddW /= , where λ/EW = . 
 
In the three dimensional case, however, the rate of deformation can not in general be 
written as the rate of change of some simple function, dtd /)(•=d , and so the above 
calculation cannot be done, implying that the hypoelastic material cannot be written in 
terms of a potential function, and the work done is path-dependent.  The path-dependence 
is, however, small when the strains are small.  
 
 
4.1.5 Hyperelastic Materials 
 
A hyperelastic material (or Green elastic material) is defined to be an elastic material for 
which a strain-energy function W exists, a scalar function of one of the strain or 
deformation tensors, whose derivative with respect to a strain component determines the 
corresponding stress component.  From the above, the linear elastic model, the Kirchhoff 
model and the one-dimensional hypoelastic model are all examples of hyperelastic 
materials.  The hyperelastic material is a subset of the Cauchy-elastic material.  
Hyperelastic material models for components under large strains will be the subject of the 
following sections. 
 
 
4.1.6 Problems 
 
1. Show that 

( )
( ) εε

IεεII

2:

tr:

=+

=⊗

II
 

 


