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Hardening 
 
In the applications discussed in the preceding two sections, the material was assumed 
to be perfectly plastic.  The issue of hardening (softening) materials is addressed in 
this section. 
 
 
8.6.1 Hardening 
 
In the one-dimensional (uniaxial test) case, a specimen will deform up to yield and 
then generally harden, Fig. 8.6.1.  Also shown in the figure is the perfectly-plastic 
idealisation.  In the perfectly plastic case, once the stress reaches the yield point (A), 
plastic deformation ensues, so long as the stress is maintained at Y.  If the stress is 
reduced, elastic unloading occurs.  In the hardening case, once yield occurs, the stress 
needs to be continually increased in order to drive the plastic deformation.  If the 
stress is held constant, for example at B, no further plastic deformation will occur; at 
the same time, no elastic unloading will occur.  Note that this condition cannot occur 
in the perfectly-plastic case, where there is one of plastic deformation or elastic 
unloading. 
 

 
  

Figure 8.6.1: uniaxial stress-strain curve (for a typical metal) 
 
These ideas can be extended to the multiaxial case, where the initial yield surface will 
be of the form 
 

0)(0 ijf                        (8.6.1) 

 
In the perfectly plastic case, the yield surface remains unchanged..  In the more 
general case, the yield surface may change size, shape and position, and can be 
described by 
 

0),(  iijf                           (8.6.2) 

 
Here, iK  represents one or more hardening parameters, which change during plastic 

deformation and determine the evolution of the yield surface.  They may be scalars or 
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higher-order tensors.  At first yield, the hardening parameters are zero, 
and )()0,( 0 ijij ff   . 

 
The description of how the yield surface changes with plastic deformation, Eqn. 8.6.2, 
is called the hardening rule. 
 
Strain Softening 
 
Materials can also strain soften, for example soils.  In this case, the stress-strain 
curve “turns down”, as in Fig. 8.6.2.  The yield surface for such a material will in 
general decrease in size with further straining.  
 

 
  

Figure 8.6.2: uniaxial stress-strain curve for a strain-softening material 
 
 
8.6.2 Hardening Rules 
 
A number of different hardening rules are discussed in this section. 
 
Isotropic Hardening 
 
Isotropic hardening is where the yield surface remains the same shape but expands 
with increasing stress, Fig. 8.6.3. 
 
In particular, the yield function takes the form 
 

0)(),( 0  ijiij ff                          (8.6.3) 

 
The shape of the yield function is specified by the initial yield function and its size 
changes as the hardening parameter   changes. 
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Figure 8.6.3: isotropic hardening 
 
For example, consider the Von Mises yield surface.  At initial yield, one has 
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          (8.6.4) 

 
where Y is the yield stress in uniaxial tension.  Subsequently, one has 
 

  03, 2  YJf iij                              (8.6.5) 

 

The initial cylindrical yield surface in stress-space with radius Y3
2  (see Fig. 8.3.11) 

develops with radius  Y3
2 .  The details of how the hardening parameter   

actually changes with plastic deformation have not yet been specified. 
 
As another example, consider the Drucker-Prager criterion, Eqn. 8.3.30, 

  0210  kJIf ij  .  In uniaxial tension, YI 1 , 3/2 YJ  , so 

 Yk 3/1  . Isotropic hardening can then be expressed as 
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                 (8.6.6) 

 
 
Kinematic Hardening 
 
The isotropic model implies that, if the yield strength in tension and compression are 
initially the same, i.e. the yield surface is symmetric about the stress axes, they remain 
equal as the yield surface develops with plastic strain.  In order to model the 
Bauschinger effect, and similar responses, where a hardening in tension will lead to a 
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softening in a subsequent compression, one can use the kinematic hardening rule.  
This is where the yield surface remains the same shape and size but merely translates 
in stress space, Fig. 8.6.4. 
 

 
 

Figure 8.6.4: kinematic hardening 
 
The yield function now takes the general form 
 

0)(),( 0  ijijiij ff                                        (8.6.7) 

 
The hardening parameter here is the stress ij , known as the back-stress or shift-

stress; the yield surface is shifted relative to the stress-space axes by ij , Fig. 8.6.5. 

 

 
 

Figure 8.6.5: kinematic hardening; a shift by the back-stress 
 
For example, again considering the Von Mises material, one has, from 8.6.4, and 
using the deviatoric part of ασ   rather than the deviatoric part of σ , 
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3  Yssf d

ijij
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ijijiij                            (8.6.8) 

 
where dα  is the deviatoric part of α .  Again, the details of how the hardening 
parameter ij  might change with deformation will be discussed later. 
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Other Hardening Rules 
 
More complex hardening rules can be used.  For example, the mixed hardening rule  
combines features of both the isotropic and kinematic hardening models, and the 
loading function takes the general form 
 

  0)(, 0  ijijiij ff         (8.6.9) 

 
The hardening parameters are now the scalar   and the tensor ij . 

 
 
8.6.3 The Flow Curve 
 
In order to model plastic deformation and hardening in a complex three-dimensional 
geometry, one will generally have to use but the data from a simple test.  For 
example, in the uniaxial tension test, one will have the data shown in Fig. 8.6.6a, with 
stress plotted against plastic strain.  The idea now is to define a scalar effective stress 
̂  and a scalar effective plastic strain p̂ , functions respectively of the stresses and 
plastic strains in the loaded body.  The following hypothesis is then introduced: a plot 
of effective stress against effective plastic strain follows the same universal plastic 
stress-strain curve as in the uniaxial case.  This assumed universal curve is known as 
the flow curve. 
 
The question now is: how should one define the effective stress and the effective 
plastic strain? 
 

 
 
Figure 8.6.6: the flow curve; (a) uniaxial stress – plastic strain curve, (b) effective 

stress – effective plastic strain curve  
 
 
8.6.4 A Von Mises Material with Isotropic Hardening 
 
Consider a Von Mises material.  Here, it is appropriate to define the effective stress to 
be 
 

  23ˆ Jij                                      (8.6.10) 
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This has the essential property that, in the uniaxial case,   Yij ̂ .  (In the same 

way, for example, the effective stress for the Drucker-Prager material, Eqn. 8.6.6, 
would be     )3/1/(ˆ 21   JIij .) 

 
For the effective plastic strain, one possibility is to define it in the following rather 
intuitive, non-rigorous, way.  The deviatoric stress s and plastic strain (increment) 
tensor pdε  are of a similar character.  In particular, their traces are zero, albeit for 
different physical reasons; 01 J  because of independence of hydrostatic pressure, 

0p
iid  because of material incompressibility in the plastic range.  For this reason, 

one chooses the effective plastic strain (increment) pd̂  to be a similar function of 
p

ijd  as ̂  is of the ijs .  Thus, in lieu of ijij ss2
3ˆ  , one chooses 

p
ij

p
ij

p ddCd  ˆ .  One can determine the constant C by ensuring that the 

expression reduces to pp dd 1ˆ    in the uniaxial case.  Considering this uniaxial case,  
ppppp ddddd 12

1
3322111 ,   , one finds that  
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          (8.6.11) 

 
Let the hardening in the uniaxial tension case be described using a relationship of the 
form (see Fig. 8.6.6) 
 

 ph                                                  (8.6.12) 
 
The slope of this flow curve is the plastic modulus, Eqn. 8.1.9, 
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        (8.6.13) 

 
The effective stress and effective plastic strain for any conditions are now assumed to 
be related through 
 

 ph  ˆˆ                                                (8.6.14) 
 
and the effective plastic modulus is given by 
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d
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ˆ

ˆ
        (8.6.15) 

 
Isotropic Hardening 
 
Assuming isotropic hardening, the yield surface is given by Eqn. 8.6.5, and with the 
definition of the effective stress, Eqn. 8.6.10, 
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  0ˆ,  Yf iij                                    (8.6.16) 

 
Differentiating with respect to the effective plastic strain, 
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One can now see how the hardening parameter evolves with deformation:   here is a 
function of the effective plastic strain, and its functional dependence on the effective 
plastic strain is given by the plastic modulus H of the universal flow curve. 
 
Loading Histories 
 
Each material particle undergoes a plastic strain history.  One such path is shown in 
Fig. 8.6.7.  At point q, the plastic strain is )(qp

i .  The effective plastic strain at q 

must be evaluated through an integration over the complete history of deformation: 
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Note that the effective plastic strain at q is not simply )()(3
2 qq p

i
p

i  , hence the 

definition of an effective plastic strain increment in Eqn. 8.6.11. 
 
 

 
 

Figure 8.6.7: plastic strain space 
 
 
Prandtl-Reuss Relations in terms of Effective Parameters 
 
Using the Prandtl-Reuss (Levy-Mises) flow rule 8.4.1, and the definitions 8.6.10-11 
for effective stress and effective plastic strain, one can now express the plastic 
multiplier as{▲Problem 1} 
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and the plastic strain increments, Eqn. 8.4.6, now read 
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or 
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Knowledge of the plastic modulus, Eqn. 8.6.15, now makes equations 8.6.21 
complete. 
 
Note here that the plastic modulus in the Prandtl-Reuss equations is conveniently 
expressible in a simple way in terms of the effective stress and plastic strain 
increment, Eqn. 8.6.19.  It will be shown in the next section that this is no 
coincidence, and that the Prandtl-Reuss flow-rule is indeed naturally associated with 
the Von-Mises criterion. 
 
 
8.6.5 Application: Combined Tension/Torsion of a thin 

walled tube with Isotropic Hardening 
 
Consider again the thin-walled tube under combined tension and torsion.  The Von 
Mises yield function in terms of the axial stress   and the shear stress   is, as in 

§8.3.1,   03 22
0  Yf ij  .  This defines the ellipse of Fig. 8.3.2.  

Subsequent yield surfaces are defined by 
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Whereas the initial yield surface is the ellipse with major and minor axes Y  and 

3/Y , subsequent yield ellipses have axes KY   and 3/)( KY  , Fig. 8.6.8. 
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Figure 8.6.8: expansion of the yield locus (ellipse) for a thin-walled tube under 
isotropic hardening  

 
The Prandtl-Reuss equations in terms of effective stress and effective plastic strain, 
8.6.20-21, reduce to 
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Consider the case where the material is brought to first yield through tension only, in 
which case the Von Mises condition  reduces to Y .  Let the material then be 
subjected to a twist whilst maintaining the axial stress constant.  The expansion of the 
yield surface is then as shown in Fig. 8.6.9. 
 

 
 

Figure 8.6.9: expansion of the yield locus for a thin-walled tube under constant 
axial loading  

 
Introducing the plastic modulus, then, one has 
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Using 22 3ˆ   Y ,  
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These equations can now be integrated.  If the material is linear hardening, so H is 
constant, then they can be integrated exactly using 
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leading to {▲Problem 2} 
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Results are presented in Fig. 8.6.10 for the case of 10/,3.0  HE .  The axial 
strain grows logarithmically and is eventually dominated by the faster-growing shear 
strain. 
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Figure 8.6.10: Stress-strain curves for thin-walled tube with isotropic linear 
strain hardening 

 
 
8.6.6 Kinematic Hardening Rules 
 
A typical uniaxial kinematic hardening curve is shown in Fig. 8.6.11a (see Fig. 8.1.3).  
During cyclic loading, the elastic zone always remains at Y2 .  Depending on the 
stress history, one can even have the situation shown in Fig. 8.6.11b, where yielding 
occurs upon unloading, even though the stress is still tensile.  
 

 
 

Figure 8.6.11: Kinematic Hardening; (a) load-unload, (b) cyclic loading 
 
The multiaxial yield function for a kinematic hardening Von Mises is given by Eqn. 
8.6.8,  
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uniaxial case, in that the radius of the Von Mises cylinder remains constant, just as the 
elastic zone in the uniaxial case remains constant (at Y2 ). 
 

 
 

Figure 8.6.12: The Von Mises cylinder shifted in the -plane 
 
One needs to specify, by specifying the evolution of the hardening paremter α , how 
the yield surface shifts with deformation.  In the multiaxial case, one has the added 
complication that the direction in which the yield surface shifts in stress space needs 
to be specified.  The simplest model is the linear kinematic (or Prager’s) hardening 
rule.  Here, the back stress is assumed to depend on the plastic strain according to 
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where c is a material parameter, which might change with deformation.  Thus the 
yield surface is translated in the same direction as the plastic strain increment.  This is 
illustrated in Fig. 8.6.13, where the principal directions of stress and plastic strain are 
superimposed. 
 

 
 

Figure 8.6.13: Linear kinematic hardening rule 
 
One can use the uniaxial (possibly cyclic) curve to again define a universal plastic 
modulus H.  Using the effective plastic strain, one can relate the constant c to H.  This 
will be discussed in §8.8, where a more general formulation will be used. 
 
Ziegler’s hardening rule is 
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where a is some scalar function of the plastic strain.  Here, then, the loading function 
translates in the direction of ijij   , Fig. 8.6.14. 

 

 
 

Figure 8.6.14: Ziegler’s kinematic hardening rule 
 
 
8.6.7 Strain Hardening and Work Hardening 
 
In the models considered above, the hardening parameters have been functions of the 
plastic strains.  For example, in the Von Mises isotropic hardening model, the 
hardening parameter   is a function of the effective plastic strain, p̂ .  Hardening 
expressed in this way is called strain hardening. 
 
Another means of generalising the uniaxial results to multiaxial conditions is to use 
the plastic work (per unit volume), also known as the plastic dissipation, 
 

p
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The total plastic work is the area under the stress – plastic strain curve of Fig. 8.6.6a, 
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A plot of stress against the plastic work can therefore easily be generated, as in Fig. 
8.6.15. 
 

 
  

Figure 8.6.15: uniaxial stress – plastic work curve (for a typical metal) 
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The stress is now expressed in the form (compare with Eqn. 8.6.12) 
 

   pp dwWw                                        (8.6.32) 

 
Again defining an effective stress ̂ , the universal flow curve to be used for arbitrary 
loading conditions is then (compare with Eqn. 8.6.14) 
 

  pWŵ                                                  (8.6.33) 
 
where now pW  is the plastic work during the multiaxial deformation.  This is known 
as a work hardening formulation. 
 
Equivalence of Strain and Work Hardening for the Isotropic Hardening 
Von Mises Material 
 
Consider the Prandtl-Reuss flow rule, Eqn. 8.4.1,  dsd i

p
i   (other flow rules will 

be examined more generally in §8.7).  In this case, working with principal stresses, 
the plastic work increment is (see Eqns. 8.2.7-10) 
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Using the Von Mises effective stress 8.6.10, and Eqn. 8.6.19, 
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where p̂  is the very same effective plastic strain as used in the strain hardening 
isotropic model, Eqn. 8.6.11.  Although true for the Von Mises yield condition, this 
will not be so in general. 
 
 
8.6.8 Problems 
 
 
1. Staring with the definition of the effective plastic strain, Eqn. 8.6.11, and using 

Eqn. 8.4.1, i
p

i sdd   , derive Eqns. 8.6.19, 
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2. Integrate Eqns. 8.6.25 and use the initial (first yield) conditions to get Eqns. 

8.6.27. 
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3. Consider the combined tension-torsion of a thin-walled cylindrical tube.  The tube 
is made of an isotropic hardening Von Mises metal with uniaxial yield stress Y .  
The strain-hardening is linear with plastic modulus H.  The tube is loaded, 

keeping the ratio 3/   at all times throughout the elasto-plastic deformation, 
until Y . 
(i) Show that the stresses and strains at first yield are given by 
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(ii) The Prandtl-Reuss equations in terms of the effective stress and effective 
plastic strain are given by Eqns. 8.6.23.  Eliminate   from these equations 

(using 3/  ). 
(iii) Eliminate the effective plastioc strain using the plastic modulus. 

(iv) The effective stress is defined as 22 3ˆ    (see Eqn. 8.6.22).  
Eliminate the effective stress to obtain 
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(v) Integrate the differential equations and evaluate any constants of 
integration 

(vi) Hence, show that the strains at the final stress values Y , 3/Y  
are given by 
























2

1
1

2

3

3

1

2

1
11

H

E

Y

E

H

E

Y

E

xy

xx




 

(vii) Sketch the initial yield (elliptical) locus and the final yield locus in   ,  
space and the loading path. 

(viii) Plot   against xx . 

 


