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6.1 Plate Theory 
 
 
6.1.1 Plates 
 
A plate is a flat structural element for which the thickness is small compared with the 
surface dimensions.  The thickness is usually constant but may be variable and is 
measured normal to the middle surface of the plate, Fig. 6.1.1 
 

 
 

Fig. 6.1.1: A plate 
 
 
6.1.2 Plate Theory 
 
Plates subjected only to in-plane loading can be solved using two-dimensional plane 
stress theory1 (see Book I, §3.5).  On the other hand, plate theory is concerned mainly 
with lateral loading. 
 
One of the differences between plane stress and plate theory is that in the plate theory the 
stress components are allowed to vary through the thickness of the plate, so that there can 
be bending moments, Fig. 6.1.2. 
 

 
 
Fig. 6.1.2: Stress distribution through the thickness of a plate and resultant bending 

moment 
 
Plate Theory and Beam Theory 
 
Plate theory is an approximate theory; assumptions are made and the general three 
dimensional equations of elasticity are reduced.  It is very like the beam theory (see Book 

                                                           
1 although if the in-plane loads are compressive and sufficiently large, they can buckle (see §6.7) 
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I, §7.4) – only with an extra dimension.  It turns out to be an accurate theory provided the 
plate is relatively thin (as in the beam theory) but also that the deflections are small 
relative to the thickness.  This last point will be discussed further in §6.10. 
 
Things are more complicated for plates than for the beams.  For one, the plate not only 
bends, but torsion may occur (it can twist), as shown in Fig. 6.1.3 
 

 
 

Fig. 6.1.3: torsion of a plate 

 
Assumptions of Plate Theory 
 
Let the plate mid-surface lie in the yx   plane and the z – axis be along the thickness 
direction, forming a right handed set, Fig. 6.1.4.  
 

 
 

Fig. 6.1.4: Cartesian axes 
 
 
The stress components acting on a typical element of the plate are shown in Fig. 6.1.5. 
 

 
 

Fig. 6.1.5: stresses acting on a material element 
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The following assumptions are made: 
 
(i) The mid-plane is a “neutral plane” 
 
The middle plane of the plate remains free of in-plane stress/strain.  Bending of the plate 
will cause material above and below this mid-plane to deform in-plane.  The mid-plane 
plays the same role in plate theory as the neutral axis does in the beam theory. 
 
(ii) Line elements remain normal to the mid-plane 
 
Line elements lying perpendicular to the middle surface of the plate remain perpendicular 
to the middle surface during deformation, Fig. 6.1.6; this is similar the “plane sections 
remain plane” assumption of the beam theory. 
 

 
 

Fig. 6.1.6: deformed line elements remain perpendicular to the mid-plane 
 
 
(iii) Vertical strain is ignored 
 
Line elements lying perpendicular to the mid-surface do not change length during 
deformation, so that 0zz  throughout the plate.  Again, this is similar to an assumption 
of the beam theory. 
 
These three assumptions are the basis of the Classical Plate Theory or the Kirchhoff 
Plate Theory.  The second assumption can be relaxed to develop a more exact theory (see 
§6.10). 
 
 
6.1.3 Notation and Stress Resultants 
 
The stress resultants are obtained by integrating the stresses through the thickness of the 
plate.  In general there will be 
 
moments M:    2 bending moments and 1 twisting moment 
out-of-plane forces V:  2 shearing forces 
in-plane forces N:    2 normal forces and 1 shear force 
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They are defined as follows: 
 
 
In-plane normal forces and bending moments, Fig. 6.1.7: 
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Fig. 6.1.7: in-plane normal forces and bending moments 
 
 
In-plane shear force and twisting moment, Fig. 6.1.8: 
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Fig. 6.1.8: in-plane shear force and twisting moment 
 
 
Out-of-plane shearing forces, Fig. 6.1.9: 
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Fig. 6.1.9: out of plane shearing forces 
 
Note that the above “forces” and “moments” are actually forces and moments per unit 
length.  This allows one to have moments varying across any section – unlike in the beam 
theory, where the moments are for the complete beam cross-section.  If one considers an 
element with dimensions x  and y , the actual moments acting on the element are 
 

yMxMxMyM xyxyyx  ,,,                                   (6.1.4) 

 
and the forces acting on the element are 
 

yNxNxNyNxVyV xyxyyxyx  ,,,,,                      (6.1.5) 

 
The in-plane forces, which are analogous to the axial forces of the beam theory, do not 
play a role in most of what follows.  They are useful in the analysis of buckling of plates 
and it is necessary to consider them in more exact theories of plate bending (see later). 
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