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4 2D Elastostatic 
Problems in Polar 
Coordinates 

 
Many problems are most conveniently cast in terms of polar coordinates.  To this end, 
first the governing differential equations discussed in Chapter 1 are expressed in terms of 
polar coordinates.  Then a number of important problems involving polar coordinates are 
solved. 
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4.1 Cylindrical and Polar Coordinates 
 
 
4.1.1 Geometrical Axisymmetry 
 
A large number of practical engineering problems involve geometrical features which 
have a natural axis of symmetry, such as the solid cylinder, shown in Fig. 4.1.1.  The 
axis of symmetry is an axis of revolution; the feature which possesses axisymmetry 
(axial symmetry) can be generated by revolving a surface (or line) about this axis. 
 

 
 

Figure 4.1.1: a cylinder 
 
Some other axisymmetric geometries are illustrated Fig. 4.1.2; a frustum, a disk on a shaft 
and a sphere. 
 

 
 

Figure 4.1.2: axisymmetric geometries 
 
Some features are not only axisymmetric – they can be represented by a plane, which is 
similar to other planes right through the axis of symmetry.  The hollow cylinder shown in 
Fig. 4.1.3 is an example of this plane axisymmetry. 
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Figure 4.1.3: a plane axisymmetric geometries 
 
 
Axially Non-Symmetric Geometries 
 
Axially non-symmetric geometries are ones which have a natural axis associated with 
them, but which are not completely symmetric.  Some examples of this type of feature, 
the curved beam and the half-space, are shown in Fig. 4.1.4; the half-space extends to 
“infinity” in the axial direction and in the radial direction “below” the surface – it can be 
thought of as a solid half-cylinder of infinite radius.  One can also have plane axially non-
symmetric features; in fact, both of these are examples of such features; a slice through 
the objects perpendicular to the axis of symmetry will be representative of the whole 
object. 
 

 
 

Figure 4.1.4: a plane axisymmetric geometries 
 
 
4.1.2 Cylindrical and Polar Coordinates 
 
The above features are best described using cylindrical coordinates, and the plane 
versions  can be described using polar coordinates.  These coordinates systems are 
described next. 
 
Stresses and Strains in Cylindrical Coordinates 
 
Using cylindrical coordinates, any point on a feature will have specific ),,( zr θ  
coordinates, Fig. 4.1.5: 
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r   – the radial direction (“out” from the axis) 
θ   – the circumferential or tangential direction (“around” the axis – 

counterclockwise when viewed from the positive z side of the 0=z  plane) 
z  – the axial direction (“along” the axis) 

 

 
 

Figure 4.1.5: cylindrical coordinates 
 
The displacement of a material point can be described by the three components in the 
radial, tangential and axial directions.  These are often denoted by 
 

 θuvuu r ≡≡ ,  and zuw ≡   
 
respectively; they are shown in Fig. 4.1.6.  Note that the displacement v  is positive in the 
positive θ  direction, i.e. the direction of increasing θ . 
 

 
 

Figure 4.1.6: displacements in cylindrical coordinates 
 
The stresses acting on a small element of material in the cylindrical coordinate system are 
as shown in Fig. 4.1.7 (the normal stresses on the left, the shear stresses on the right). 
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Figure 4.1.7: stresses in cylindrical coordinates 
 
The normal strains θθεε ,rr  and zzε  are a measure of the elongation/shortening of 
material, per unit length, in the radial, tangential and axial directions respectively;  the 
shear strains zr θθ εε ,  and zrε  represent (half) the change in the right angles between line 
elements along the coordinate directions.  The physical meaning of these strains is 
illustrated in Fig. 4.1.8. 
 

 
 

Figure 4.1.8: strains in cylindrical coordinates 
 
 
Plane Problems and Polar Coordinates 
 
The stresses in any particular plane of an axisymmetric body can be described using the 
two-dimensional polar coordinates ( )θ,r  shown in Fig. 4.1.9. 
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Figure 4.1.9: polar coordinates 
 
There are three stress components acting in the plane 0=z : the radial stress rrσ , the 
circumferential (tangential) stress θθσ  and the shear stress θσ r , as shown in Fig. 4.1.10.  
Note the direction of the (positive) shear stress – it is conventional to take the z axis out of 
the page and so the θ  direction is counterclockwise.  The three stress components which 
do not act in this plane, but which act on this plane ( zzz θσσ ,  and zrσ ), may or may not 
be zero, depending on the particular problem (see later).    
 

 
 

Figure 4.1.10: stresses in polar coordinates 
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4.2 Differential Equations in Polar Coordinates 
 
Here, the two-dimensional Cartesian relations of Chapter 1 are re-cast in polar 
coordinates.   
 
 
4.2.1 Equilibrium equations in Polar Coordinates 
 
One way of expressing the equations of equilibrium in polar coordinates is to apply a 
change of coordinates directly to the 2D Cartesian version, Eqns. 1.1.8, as outlined in the 
Appendix to this section, §4.2.6.  Alternatively, the equations can be derived from first 
principles by considering an element of material subjected to stresses θθσσ ,rr  and θσ r , 
as shown in Fig. 4.2.1.  The dimensions of the element are rΔ  in the radial direction, and 

θΔr  (inner surface) and ( ) θΔΔ+ rr  (outer surface) in the tangential direction.  
 

 
 

Figure 4.2.1: an element of material 
 
Summing the forces in the radial direction leads to 
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For a small element, 1cos,sin ≈≈ θθθ  and so, dividing through by θΔΔr , 
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A similar calculation can be carried out for forces in the tangential direction {▲Problem 
1}.  In the limit as 0, →ΔΔ θr , one then has the two-dimensional equilibrium equations 
in polar coordinates: 
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     Equilibrium Equations  (4.2.3) 

 
 
4.2.2 Strain Displacement Relations and Hooke’s Law 
 
The two-dimensional strain-displacement relations can be derived from first principles by 
considering line elements initially lying in the r and θ  directions.  Alternatively, as 
detailed in the Appendix to this section, §4.2.6, they can be derived directly from the 
Cartesian version, Eqns. 1.2.5,  
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The stress-strain relations in polar coordinates are completely analogous to those in 
Cartesian coordinates – the axes through a small material element are simply labelled 
with different letters.  Thus Hooke’s law is now  
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Hooke’s Law (Plane Stress)     (4.2.5a) 
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Hooke’s Law (Plane Strain)     (4.2.5b) 
 
 
4.2.3 Stress Function Relations 
 
In order to solve problems in polar coordinates using the stress function method, Eqns. 
3.2.1 relating the stress components to the Airy stress function can be transformed using 
the relations in the Appendix to this section, §4.2.6: 
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It can be verified that these equations automatically satisfy the equilibrium equations 
4.2.3 {▲Problem 2}. 
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The biharmonic equation 3.2.3 becomes 
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4.2.4 The Compatibility Relation 
 
The compatibility relation expressed in polar coordinates is (see the Appendix to this 
section, §4.2.6) 
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4.2.5 Problems 
 
1. Derive the equilibrium equation 4.2.3b 
 
2. Verify that the stress function relations 4.2.6 satisfy the equilibrium equations 4.2.3. 
 
3. Verify that the strains as given by 4.2.4 satisfy the compatibility relations 4.2.8. 
 
 
4.2.6 Appendix to §4.2 
 
From Cartesian Coordinates to Polar Coordinates 
 
To transform equations from Cartesian to polar coordinates, first note the relations 
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Then the Cartesian partial derivatives become 
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The second partial derivatives are then 
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Similarly, 
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Equilibrium Equations 
 
The Cartesian stress components can be expressed in terms of polar components using the 
stress transformation formulae, Part I, Eqns. 3.4.7.  Using a negative rotation (see Fig. 
4.2.2), one has 
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Applying these and 4.2.10 to the 2D Cartesian equilibrium equations 3.1.3a-b lead to 
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which then give Eqns. 4.2.3. 
 

 
 

Figure 4.2.2: rotation of axes 
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The Strain-Displacement Relations 
 
Noting that 
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the strains in polar coordinates can be obtained directly from Eqns. 1.2.5: 
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One obtains similar expressions for the strains yyε  and xyε .  Substituting the results into 
the strain transformation equations Part I, Eqns. 3.8.1, 
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then leads to the equations given above, Eqns. 4.2.4. 
 
The Stress – Stress Function Relations 
 
The stresses in polar coordinates are related to the stresses in Cartesian coordinates 
through the stress transformation equations (this time a positive rotation; compare with 
Eqns. 4.2.13 and Fig. 4.2.2)  
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Using the Cartesian stress – stress function relations 3.2.1, one has 
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and similarly for θθθ σσ r, .  Using 4.2.11-12 then leads to 4.2.6. 
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The Compatibility Relation 
 
Beginning with the Cartesian relation 1.3.1, each term can be transformed using 4.2.11-12 
and the strain transformation relations, for example 
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 After some lengthy calculations, one arrives at 4.2.8. 
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4.3 Plane Axisymmetric Problems 
 
In this section are considered plane axisymmetric problems.  These are problems in 
which both the geometry and loading are axisymmetric. 
 
 
4.3.1 Plane Axisymmetric Problems 
 
Some three dimensional (not necessarily plane) examples of axisymmetric problems 
would be the thick-walled (hollow) cylinder under internal pressure, a disk rotating about 
its axis1, and the two examples shown in Fig. 4.3.1; the first is a complex component 
loaded in a complex way, but exhibits axisymmetry in both geometry and loading;  the 
second is a sphere loaded by concentrated forces along a diameter. 
 

 
 

Figure 4.3.1: axisymmetric problems 
 
A two-dimensional (plane) example would be one plane of the thick-walled cylinder 
under internal pressure, illustrated in Fig. 4.3.22. 
 

 
 

Figure 4.3.2: a cross section of an internally pressurised cylinder 
 
It should be noted that many problems involve axisymmetric geometries but non-
axisymmetric loadings, and vice versa.  These problems are not axisymmetric.  An 
example is shown in Fig. 4.3.3 (the problem involves a plane axisymmetric geometry). 
 

                                                 
1 the rotation induces a stress in the disk 
2 the rest of the cylinder is coming out of, and into, the page 
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Figure 4.3.3: An axially symmetric geometry but with a non-axisymmetric loading 
 
The important characteristic of these axisymmetric problems is that all quantities, be they 
stress, displacement, strain, or anything else associated with the problem, must be 
independent of the circumferential variable  .  As a consequence, any term in the 
differential equations of §4.2 involving the derivatives 22 /,/   , etc. can be 
immediately set to zero. 
 
 
4.3.2 Governing Equations for Plane Axisymmetric Problems 
 
The two-dimensional strain-displacement relations are given by Eqns. 4.2.4 and these 
simplify in the axisymmetric case to 
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Here, it will be assumed that the displacement 0u .  Cases where 0u  but where the 

stresses and strains are still independent of   are termed quasi-axisymmetric problems; 
these will be examined in a later section.  Then 4.3.1 reduces to 
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It follows from Hooke’s law that 0 r .  The non-zero stresses are illustrated in Fig. 

4.3.4. 
 

axisymmetric plane 
representative of 

feature 



Section 4.3 

Solid Mechanics Part II                                                                                Kelly 68

 
 

Figure 4.3.4: stress components in plane axisymmetric problems 
 
 
4.3.3 Plane Stress and Plane Strain 
 
Two cases arise with plane axisymmetric problems: in the plane stress problem, the 
feature is very thin and unloaded on its larger free-surfaces, for example a thin disk under 
external pressure, as shown in Fig. 4.3.5.  Only two stress components remain, and 
Hooke’s law 4.2.5a reads 
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with   0, 


   zzrrrzz E
 and 0zz . 

 

 
 

Figure 4.3.5: plane stress axisymmetric problem 
 
In the plane strain case, the strains  zzz ,  and zr  are zero.  This will occur, for 

example, in a hollow cylinder under internal pressure, with the ends fixed between 
immovable platens, Fig. 4.3.6. 
 

 
 

Figure 4.3.6: plane strain axisymmetric problem 
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Hooke’s law 4.2.5b reads 
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  (4.3.4) 

 
with    rrzz . 

 
Shown in Fig. 4.3.7 are the stresses acting in the axisymmetric plane body (with zz  zero 
in the plane stress case). 
 

 
 

Figure 4.3.7: stress components in plane axisymmetric problems 
 
 
4.3.4 Solution of Plane Axisymmetric Problems 
 
The equations governing the plane axisymmetric problem are the equations of 
equilibrium 4.2.3 which reduce to the single equation 
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the strain-displacement relations 4.3.2 and the stress-strain law 4.3.3-4. 
 
Taking the plane stress case, substituting 4.3.2 into the second of 4.3.3 and then 
substituting the result into 4.3.5 leads to (with a similar result for plane strain) 
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        (4.3.6) 

 
This is Navier’s equation for plane axisymmetry.  It is an “Euler-type” ordinary 
differential equation which can be solved exactly to get (see Appendix to this section, 
§4.3.8) 
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With the displacement known, the stresses and strains can be evaluated, and the full 
solution is 
 

221221

221221

21

1

11
,

1

11

1
,

1

1

r
CECE

r
CECE

r
CC

r
CC

r
CrCu

rr

rr





























          (4.3.8) 

 
For problems involving stress boundary conditions, it is best to have simpler expressions 
for the stress so, introducing new constants   1/2ECA  and   12/1ECC , the 
solution can be re-written as 
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  (4.3.9) 

Plane stress axisymmetric solution 
 
Similarly, the plane strain solution turns out to be again 4.3.8a-b only the stresses are now 
{▲Problem 1} 
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Then, with   1/2ECA  and    2112/1  ECC , the solution can be written 
as 
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  (4.3.11) 

Plane strain axisymmetric solution 
 
The solutions 4.3.9, 4.3.11 involve two constants.  When there is a solid body with one 
boundary, A  must be zero in order to ensure finite-valued stresses and strains; C can be 
determined from the boundary condition.  When there are two boundaries, both A and C 
are determined from the boundary conditions. 
 
 



Section 4.3 

Solid Mechanics Part II                                                                                Kelly 71

4.3.5 Example: Expansion of a thick circular cylinder under 
internal pressure 

 
Consider the problem of Fig. 4.3.8.  The two unknown constants A and C are obtained 
from the boundary conditions 
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which lead to 
 
 

02)(,2)(
22

 C
b
AbpC

a
Aa rrrr           (4.3.13) 

 
so that 
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Cylinder under Internal Pressure 
 

 
 

Figure 4.3.8: an internally pressurised cylinder 
 
The stresses through the thickness of the cylinder walls are shown in Fig. 4.3.9a.  The 
maximum principal stress is the   stress and this attains a maximum at the inner face.  

For this reason, internally pressurized vessels often fail there first, with microcracks 
perpendicular to the inner edge been driven by the tangential stress, as illustrated in Fig. 
4.3.9b. 
 
Note that by setting tab   and taking the wall thickness to be very small, att 2, , 
and letting ra  , the solution 4.3.14 reduces to: 
 

t
rp

t
rpp zzrr    ,,                               (4.3.15) 

 
which is equivalent to the thin-walled pressure-vessel solution, Part I, §4.5.2 (if 2/1 , 
i.e. incompressible). 
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Figure 4.3.9: (a) stresses in the thick-walled cylinder, (b) microcracks driven by 
tangential stress 

 
 
Generalised Plane Strain and Other Solutions 
 
The solution for a pressurized cylinder in plane strain was given above, i.e. where zz  was 
enforced to be zero. There are two other useful situations: 
(1) The cylinder is free to expand in the axial direction.  In this case, zz  is not forced to 

zero, but allowed to be a constant along the length of the cylinder, say zz .  The zz  

stress is zero, as in plane stress.  This situation is called generalized plane strain. 
(2) The cylinder is closed at its ends. Here, the axial stresses zz  inside the walls of the 

tube are counteracted by the internal pressure p acting on the closed ends. The force 
acting on the closed ends due to the pressure is 2p a  and the balancing axial force is 

 2 2
zz b a   , assuming zz  to be constant through the thickness. For equilibrium 
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Returning to the full three-dimensional stress-strain equations (Part I, Eqns. 6.1.9), set 

zzzz   , a constant, and 0 yzxz  .  Re-labelling zyx ,,  with zr ,, , and again with 

0 r , one has 
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Substituting the strain-displacement relations 4.3.2 into 4.3.16a-b, and, as before, using 
the axisymmetric equilibrium equation 4.3.5, again leads to the differential equation 4.3.6 
and the solution 1 2 /u C r C r  , with 2 2

1 2 1 2/ , /rr C C r C C r     , but now the 

stresses are 
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As before, to make the solution more amenable to stress boundary conditions, we let 

  1/2ECA  and    2112/1  ECC , so that the solution is 
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Generalised axisymmetric solution 
 
For internal pressure p, the solution to 4.3.19 gives the same solution for radial and 
tangential stresses as before, Eqn. 4.3.14. The axial displacement is zzz zu   (to within a 
constant). 
 
In the case of the cylinder with open ends (generalized plane strain), 0zz  , and one 

finds from Eqn. 4.3.19 that  2 22 / / 1 0zz p E b a     . In the case of the cylinder 

with closed ends, one finds that    2 21 2 / / 1 0zz p E b a     . 

 
A Transversely isotropic Cylinder  
 
Consider now a transversely isotropic cylinder.  The strain-displacement relations 4.3.2 
and the equilibrium equation 4.3.5 are applicable to any type of material.  The stress-
strain law can be expressed as (see Part I, Eqn. 6.2.14) 
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Here, take zzzz   , a constant.  Then, using the strain-displacement relations and the 
equilibrium equation, one again arrives at the differential equation 4.3.6 so the solution 
for displacement and strain is again 4.3.8a-b.  With  11122 / CCCA   and 

 12111 2/ CCCC  , the stresses can be expressed as 
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                                   (4.3.21) 

 
The plane strain solution then follows from 0zz  and the generalized plane strain 

solution from 0zz .  These solutions reduce to 4.3.11, 4.3.19 in the isotropic case. 
 
 
4.3.6 Stress Function Solution 
 
An alternative solution procedure for axisymmetric problems is the stress function 
approach.  To this end, first specialise equations 4.2.6 to the axisymmetric case: 
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One can check that these equations satisfy the axisymmetric equilibrium equation 4.3.4. 
 
The biharmonic equation in polar coordinates is given by Eqn. 4.2.7.  Specialising this to 
the axisymmetric case, that is, setting 0/   , leads to 
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Alternatively, one could have started with the compatibility relation 4.2.8, specialised that 
to the axisymmetric case: 
 
 

0
21

2

2













rrrrr
rr  

                                        (4.3.25) 

 



Section 4.3 

Solid Mechanics Part II                                                                                Kelly 75

and then combine with Hooke’s law 4.3.3 or 4.3.4, and 4.3.22, to again get 4.3.24. 
 
Eqn. 4.3.24 is an Euler-type ODE and has solution (see Appendix to this section, §4.3.8) 
 

DCrrBrrA  22 lnln                                   (4.3.26) 
 
The stresses then follow from 4.3.22: 
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The strains are obtained from the stress-strain relations.  For plane strain, one has, from 
4.3.4, 
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Comparing these with the strain-displacement relations 4.3.2, and integrating rr , one has 
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To ensure that one has a unique displacement ru , one must have 0B  and the constant 
of integration 0F , and so one again has the solution 4.3.113. 
 
 
4.3.7 Problems 
 
1. Derive the solution equations 4.3.11 for axisymmetric plane strain. 
   
2. A cylindrical rock specimen is subjected to a pressure pover its cylindrical face and is 

constrained in the axial direction.  What are the stresses, including the axial stress, in 
the specimen?  What are the displacements? 

 

                                                 
3 the biharmonic equation was derived using the expression for compatibility of strains (4.3.23 being the 
axisymmetric version).  In simply connected domains, i.e. bodies without holes, compatibility is assured 
(and indeed A and B must be zero in 4.3.26 to ensure finite strains).  In multiply connected domains, 
however, for example the hollow cylinder, the compatibility condition is necessary but not sufficient to 
ensure compatible strains (see, for example, Shames and Cozzarelli (1997)), and this is why compatibility 
of strains must be explicitly enforced as in 4.3.25 
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3. A long hollow tube is subjected to internal pressure ip  and external pressures op  and 

constrained in the axial direction. What is the stress state in the walls of the tube?  
What if ppp oi  ? 

 
4. A long mine tunnel of radius a is cut in deep rock.  Before the mine is constructed the 

rock is under a uniform pressure p.  Considering the rock to be an infinite, 
homogeneous elastic medium with elastic constants E and  , determine the radial 
displacement at the surface of the tunnel due to the excavation.  What radial stress 

Parr )(  should be applied to the wall of the tunnel to prevent any such 
displacement? 

 
5. A long hollow elastic tube is fitted to an inner rigid (immovable) shaft.  The tube is 

perfectly bonded to the shaft.  An external pressure p is applied to the tube.  What are 
the stresses and strains in the tube? 

 
6. Repeat Problem 3 for the case when the tube is free to expand in the axial direction.  

How much does the tube expand in the axial direction (take 0zu  at 0z )? 
 
 
4.3.8 Appendix  
 
Solution to Eqn. 4.3.6 
 
The differential equation 4.3.6 can be solved by a change of variable ter  , so that 
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and, using the chain rule, 
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The differential equation becomes 
 

0
2

2

 u
dt

ud
                                            (4.3.30) 

 
which is an ordinary differential equation with constant coefficients.  With teu  , one 
has the characteristic equation 012   and hence the solution 
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Solution to Eqn. 4.3.24 
 
The solution procedure for 4.3.24 is similar to that given above for 4.3.6.  Using the 
substitution ter   leads to the differential equation with constant coefficients 
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                                 (4.3.32) 

 

which, with te  , has the characteristic equation   02 22  .  This gives the 
repeated roots solution 
 

DCeBteAt tt  22                                 (4.3.33) 
 
and hence 4.3.24. 
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4.4 Rotating Discs 
 
 
4.4.1 The Rotating Disc 
 
Consider a thin disc rotating with constant angular velocity  , Fig. 4.4.1.  Material 
particles are subjected to a centripetal acceleration 2rar  .  The subscript r indicates 
an acceleration in the radial direction and the minus sign indicates that the particles are 
accelerating towards the centre of the disc. 
 

 
 

Figure 4.4.1: the rotating disc 
 
The accelerations lead to an inertial force (per unit volume) 2rFa   which in turn 

leads to stresses in the disc.  The inertial force is an axisymmetric “loading” and so this is 
an axisymmetric problem.  The axisymmetric equation of equilibrium is given by 4.3.5.  
Adding in the acceleration term gives the corresponding equation of motion: 
 

  21 


 r
rr rr

rr 



,         (4.4.1) 

 
This equation can be expressed as 
 

  0
1





rrr
rr b

rr 


,         (4.4.2) 

 
where 2rbr  .  Thus the dynamic rotating disc problem has been converted into an 
equivalent static problem of a disc subjected to a known body force.  Note that, in a 
general dynamic problem, and unlike here, one does not know what the accelerations are 
– they have to be found as part of the solution procedure. 
 
Using the strain-displacement relations 4.3.2 and the plane stress Hooke’s law 4.3.3 then 
leads to the differential equation 
 

2
2

22

2 111  r
E

u
rdr

du
rdr

ud 
         (4.4.3) 

 
This is Eqn. 4.3.6 with a non-homogeneous term.  The solution is derived in the 
Appendix to this section, §4.4.3: 
 

2r



Section 4.4 

Solid Mechanics Part II                                                                                Kelly 79

23
2

21

1

8

11  r
Er

CrCu 
         (4.4.4) 

 
As in §4.3.4, let   1/2ECA  and   12/1ECC , and the full general solution is, 
using 4.3.2 and 4.3.3, {▲Problem 1} 
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                       (4.4.5) 

 
which reduce to 4.3.9 when 0 . 
 
A Solid Disc 
 
For a solid disc, A in 4.4.5 must be zero to ensure finite stresses and strains at 0r .  C is 
then obtained from the boundary condition 0)( brr , where b is the disc radius: 
 

  223
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,0 bCA                                           (4.4.6) 

 
The stresses and displacements are 
 

 


































222

222

222

3

11

8

3
)(

3

31

8

3
)(

8

3
)(

rbr
E

ru

rbr

rbrrr









                             (4.4.7) 

 
Note that the displacement is zero at the disc centre, as it must be, but the strains (and 
hence stresses) do not have to be, and are not, zero there. 
 
Dimensionless stress and displacement are plotted in Fig. 4.4.2 for the case of 3.0 .  
The maximum stress occurs at 0r , where 
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The disc expands by an amount 
 

32

4

1
)( b

E
bu 

                                               (4.4.9) 

 

 
 

Figure 4.4.2: stresses and displacements in the solid rotating disc 
 
 
A Hollow Disc 
 
The boundary conditions for the hollow disc are 
 

0)(,0)(  ba rrrr                                       (4.4.10) 
 
where a and b are the inner and outer radii respectively.  It follows from 4.4.5 that 
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and the stresses and displacement are 
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which reduce to 4.4.7 when 0a . 
 
Dimensionless stress and displacement are plotted in Fig. 4.4.3 for the case of 3.0  
and 2.0/ ba .  The maximum stress occurs at the inner surface, where 
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which is approximately twice the solid-disc maximum stress. 
 

 
 

Figure 4.4.3: stresses and displacements in the hollow rotating disc 
 
 
 
4.4.2 Problems 
 
1. Derive the full solution equations 4.4.5 for the thin rotating disc, from the 

displacement solution 4.4.4. 
   
 
4.4.3 Appendix: Solution to Eqn. 4.4.3 
 
As in §4.3.8, transform Eqn. 4.4.3 using ter   into 
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The homogeneous solution is given by 4.3.31.  Assume a particular solution of the form 
t

p Aeu 3  which, from 4.4.14, gives 

 

t
p e

E
u 32
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8
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                                           (4.4.15)  

 
Adding together the homogeneous and particular solutions and transforming back to r’s 
then gives 4.4.4. 


