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10 Viscoelasticity 
 
 
The Linear Elastic Solid has been the main material model analysed in this book thus far.  
It has a long history and is still the most widely used model in applications today. 
 
Viscoelasticity is the study of materials which have a time-dependence.  Vicat, a French 
engineer from the Department of Road Construction, noticed in the 1830’s that bridge-
cables continued to elongate over time even though under constant load, a viscoelastic 
phenomenon known as creep.  Many other investigators, such as Weber and Boltzmann, 
studied viscoelasticity throughout the nineteenth century, but the real driving force for its 
study came later – the increased demand for power and the associated demand for 
materials which would stand up to temperatures and pressures that went beyond previous 
experience.  By then it had been recognised that significant creep occurred in metals at 
high temperatures.  The theory developed further with the emergence of synthetic 
polymer plastics, which exhibit strong viscoelastic properties.  The study of 
viscoelasticity is also important in Biomechanics, since many biomaterials respond 
viscoelastically, for example, heart tissue, muscle tissue and cartilage. 
 
Viscoelastic materials are defined in section 10.1 and some everyday viscoelastic 
materials and phenomena are discussed in section 10.2.  The basic mechanical models of 
viscoelasticity, the Maxwell and Kelvin models, are introduced in section 10.3, as is the 
general differential equation form of the linear viscoelastic law.  The hereditary integral 
form of the constitutive equation is discussed in section 10.4 and it is shown how the 
Laplace transform can be used to solve linear viscoelastic problems in section 10.5.  In 
section 10.6, dynamic loading, impact and vibrations of viscoelastic materials are 
considered.  Finally, in the last section, temperature effects are briefly discussed, 
including the important concept of thermorheologically simple materials. 
 
 



 284

 



Section 10.1 

Solid Mechanics Part I                                                                                Kelly 285

10.1 The Response of Viscoelastic Materials 
 
 
10.1.1 Viscoelastic Materials 
 
The basic response of the viscoelastic material was discussed in section 5.3.2.  Repeating 
what was said there, the typical response of a viscoelastic material is as sketched in Fig. 
10.1.1.  The following will be noted: 

(i) the loading and unloading curves do not coincide, Fig. 10.1.1a, but form a 
hysteresis loop 

(ii) there is a dependence on the rate of straining dtd / , Fig. 10.1.1b; the faster 
the stretching, the larger the stress required  

(iii) there may or may not be some permanent deformation upon complete 
unloading, Fig. 10.1.1a 

 

 
 

Figure 10.1.1: Response of a Viscoelastic material in the Tension test; (a) loading 
and unloading with possible permanent deformation (non-zero strain at zero stress), 

(b) different rates of stretching 
 

The effect of rate of stretching shows that the viscoelastic material depends on time.  This 
contrasts with the elastic material, whose constitutive equation is independent of time, for 
example it makes no difference whether an elastic material is loaded to some given stress 
level for one second or one day, or loaded slowly or quickly; the resulting strain will be 
the same. 
 
It was shown in Chapter 5 that the area beneath the stress-strain curve is the energy per 
unit volume; during loading, it is the energy stored in a material, during unloading it is the 
energy recovered.  There is a difference between the two for the viscoelastic material, 
indicated by the shaded region in Fig. 10.1.1a.  This shaded region is a measure of the 
energy lost through heat transfer mechanisms during the deformation. 
 
Most engineering materials undergo plasticity, meaning permanent deformations occur 
once the stress goes above the elastic limit.  The stress-strain curve for these materials can 
look very similar to that of Fig. 10.1.1a, but, in contrast to viscoelasticity, plasticity is rate 
independent.  Plasticity will be discussed in chapter 11. 
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Linear Viscoelasticity 
 
Linear viscoelastic materials are those for which there is a linear relationship between 
stress and strain (at any given time),   .  As mentioned before, this requires also that 
the strains are small, so that the engineering strain measure can be used (since the exact 
strain is inherently non-linear).  
 
Strain-time curves for a linear viscoelastic material subjected to various constant stresses 
are shown in Fig. 10.1.2.  At any given time, say 1t , the strain is proportional to stress, so 

that the strain there due to o3  is three times the strain due to o . 

 

 
 

Figure 10.1.2: Strain as a function of time at different loads 
 
Linear viscoelasticity is a reasonable approximation to the time-dependent behaviour of 
metals and ceramics at relatively low temperatures and under relatively low stress.  
However, its most widespread application is in the modelling of polymers. 
 
 
10.1.2 Testing of Viscoelastic Materials 
 
The tension test described in section 5.2 is the standard materials test.  A number of other 
tests which are especially useful for the characterisation of viscoelastic materials have 
been developed, and these are discussed next. 
 
The Creep and Recovery Test 
 
The creep-recovery test involves loading a material at constant stress, holding that stress 
for some length of time and then removing the load.  The response of a typical 
viscoelastic material to this test is show in Fig. 10.1.3. 
 
First there is an instantaneous elastic straining, followed by an ever-increasing strain over 
time known as creep strain.  The creep strain usually increases with an ever decreasing 
strain rate so that eventually a more-or-less constant-strain steady state is reached, but 
many materials often do not reach such a noticeable steady-state, even after a very long 
time. 
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When unloaded, the elastic strain is recovered immediately.  There is then anelastic 
recovery – strain recovered over time; this anelastic strain is usually very small for 
metals, but may be significant in polymeric materials.  A permanent strain may then be 
left in the material1. 
 
A test which focuses on the loading phase only is simply called the creep test. 
 

 
 

Figure 10.1.3: Strain response to the creep-recovery test 
 
 
Stress Relaxation Test 
 
The stress relaxation test involves straining a material at constant strain and then holding 
that strain, Fig. 10.1.4.  The stress required to hold the viscoelastic material at the 
constant strain will be found to decrease over time.  This phenomenon is called stress 
relaxation; it is due to a re-arrangement of the material on the molecular or micro-scale. 
 

                                                 
1 if the load is above the yield stress, then some of the permanent deformation will be instantaneous plastic 
(rate-independent) strain; the subject of this chapter is confined to materials which are loaded up to a stress 
below any definable yield stress; rate–dependent materials with a yield stress above which permanent 
deformation take place, the viscoplastic materials, are discussed in Chapter 12 
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Figure 10.1.4: Stress response to the stress-relaxation test 
 
 
The Cyclic Test 
 
The cyclic test involves a repeating pattern of loading-unloading, Fig. 10.1.5 (see section 
5.2.5).  It can be strain-controlled (with the resulting stress observed), as in Fig. 10.1.5, or 
stress-controlled (with the resulting strain observed).  The results of a cyclic test can be 
quite complex, due to the creep, stress-relaxation and permanent deformations. 
 

 
 

Figure 10.1.5: Typical stress response to the cyclic test 
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10.2 Examples and Applications of Viscoelastic 
Materials 

 
Some of the properties of viscoelastic materials are their ability to creep, recover, undergo 
stress relaxation and absorb energy.  Some examples of these phenomena are discussed in 
this section1. 
 
 
10.2.1 Creep and Recovery 
 
The disks in the human spine are viscoelastic.  Under normal body weight, the disks 
creep, that is they get shorter with time.  Lying down allows the spinal disks to recover 
and this means that most people are taller in the morning than in the evening.  Astronauts 
have gained up to 5cm in height under near-zero gravity conditions. 
 
Skin tissue is viscoelastic.  This can be seen by pinching the skin at the back of the hand; 
it takes time to recover back to its original flat position.  The longer the skin is held in the 
pinched position, the longer it takes to recover.  The more rapidly it is pinched, the less 
time it takes to recover – it behaves “more elastically”.  Skin is an ageing material, that 
is, its physical properties change over time.  Younger skin recovers more rapidly than 
older skin.  
 
Wood is viscoelastic.  The beams of old wooden houses can often be seen to sag, but this 
creeping under the weight of the roof and gravity can take many decades or centuries to 
be noticeable.  Concrete and soils are other materials which creep, as is ice, which has 
consequences for glacial movements. 
 
Materials which behave elastically at room temperature often attain significant 
viscoelastic properties when heated.  Such is the case with metal turbine blades in jet 
engines, which reach very high temperatures and need to withstand very high tensile 
stresses.  Conventional metals can creep significantly at high temperatures and this has 
led to the development of creep-resistant alloys; turbine blades are now often made of so-
called superalloys which contain some or all of nickel, cobalt, chromium, aluminium, 
titanium, tungsten and molybdenum. 
 
Creep is also one of the principal causes of failure in the electric light bulb.  The filaments 
in light bulbs are made of tungsten, a metal with a very high melting point (>3300oC); 
this is essential because the filament needs to be electrically heated to a temperature high 
enough for light emission (2000oC).  If the filament creeps too much it sags and its coils 
touch each other, leading to a localised short circuit.  Light bulbs last longer if the 
temperature is reduced, as in dimmed lights.  Creep can also be reduced by adding 
potassium bubbles to the tungsten. 
 
Polymer foams used in seat cushions creep, allowing progressive conformation of the 
cushion to the body shape.  These cushions help reduce the pressures on the body and are 
very helpful for people confined to wheelchairs or hospital beds for lengthy periods.  

                                                 
1 quite a few of the applications and examples here are taken from Viscoelastic Solids, by R. S. Lakes, CRC 
Press, 1999 
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They often have to be replaced after about 6 months because creep causes them to 
become more dense and stiff.   
 
A newly born baby’s head is viscoelastic and its ability to creep and recover helps in the 
birthing process.  Also, if a baby lies in one specific position for long, for example the 
same way of sleeping all the time, its head can become misshapen due to creep 
deformation.  A baby's skull becomes more solid after about a year. 
 
Viscoelasticity is also involved in the movement and behaviour of the tectonic plates, the 
plates which float on and travel independently over the mantle of the earth, and which are 
responsible for earthquakes, volcanoes, etc. 
 
 
10.2.2 Stress Relaxation 
 
Guitar strings are viscoelastic.  When tightened they take up a tensile stress.  However, 
when fixed at constant length (strain), stress relaxation occurs.  The speed of sound in a 

string is   /c , where   is the stress and   the density.  The frequency is 

/cf  , where   is the wavelength.  The length of the string L  is equal to half the 

wavelength: )2/(/ Lf  .  The reduction in stress thus implies a reduction in 

frequency and a lowering of pitch – the guitar goes out of tune.  The strings of a Classical 
Guitar are made of Nylon, a synthetic polymer.  The great classical guitarists of the 19th 
Century did not have Nylon, invented in 1938, but used Catgut strings, usually made from 
the intestines of sheep; Catgut is a natural polymer.  Metal guitar strings do not go out of 
tune so easily since metals are less viscoelastic than polymers. 
 
 
10.2.3 Energy Absorption 
 
Tall buildings vibrate when dynamically loaded by wind or earthquakes.  Viscoelastic 
materials have the property of absorbing such vibrational energy – damping the 
vibrations.  Viscoelastic dampers are used in some tall buildings, for example in the 
Columbia Center in Seattle, in which the dampers consist of steel plates coated with a 
viscoelastic polymer compound - the dampers are fixed to some of the diagonal bracing 
members. 
 
Sometimes it is necessary to control vibrations but the use of a polymer is inappropriate - 
in this case it is necessary to use some other material with good vibration-control 
properties.  A good example is the use of copper-manganese alloy to reduce vibration and 
noise from naval ship propellers.  This alloy has also been used in pneumatic rock 
crushers.  Zinc is also relatively viscoelastic for a metal and zinc-aluminium alloys are 
used in pneumatic drills - the alloy damps the vibrations and makes it a little less 
uncomfortable for anyone holding a pneumatic drill.  Viscoelastic materials are also used 
to line the gloves worn by people working with pneumatic drills and jackhammers. 
 
Helicopters make a lot of noise, which comes mainly from the turbine (rotary engine) and 
gears, but it is usually exacerbated by resonance of the fuselage skin.  Acoustic blankets 
consisting of a layer of fibreglass sandwiched between layers of vinyl cloth, placed inside 
the fuselage, can reduce the noise.  Sikorsky, in their HH-53C rescue helicopter, coated a 
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small portion of the fuselage skin with damping treatments, which helped reduce the 
high-frequency noise in the cabin by 10 dB. 
 
In quartz watches, vibrations are set up in quartz crystal at ultrasonic frequency (32.768 
kHz).  The vibrations are then used to generate periodic signals, which may be divided 
into intervals of time, like the second.  Quartz (SiO2) is a very low loss material, meaning 
that it is very un-viscoelastic.  This ensures that the vibrations are not dampened and the 
watch keeps good time. 
 
Tuning forks are often made of aluminium as it is also a low-loss material.  An 
aluminium tuning fork will continue vibrating for quite a long time after being struck – 
the vibrations eventually die down because of sound-energy loss, but also because of the 
small energy loss due to viscoelasticity within the aluminium fork. 
 
Viscoelastic materials are excellent impact absorbers.  A peak impact force can be 
reduced by a factor of two if an impact buffer is made of viscoelastic, rather than elastic, 
material.  Elastomers are highly viscoelastic and make good impact absorbers; these are 
any of various substances resembling rubber - they have trade names like Sorbothane, 
Implus and Noene. 
 
Viscoelastic materials are used in automobile bumpers, on computer drives to protect 
from mechanical shock, in helmets (the foam padding inside), in wrestling mats, etc.  
Viscoelastic materials are also used in shoe insoles to reduce impact transmitted to a 
person's skeleton. 
 
The cartilage at the ends of the femur and tibia, in the knee joint, is a natural shock 
absorber.  In an osteoarthritic knee, the cartilage has degraded – sometimes the bones 
grind against each other causing great pain.  Synthetic viscoelastic materials can be 
injected directly into an osteoarthritic knee, enveloping cartilage-deficient joints and 
acting as a lubricant and shock absorber. 
 



Section 10.3 

Solid Mechanics Part I                                                                                Kelly 292

10.3 Rheological Models 
 
In this section, a number of one-dimensional linear viscoelastic models are discussed. 
 
 
10.3.1 Mechanical (rheological) models 
 
The word viscoelastic is derived from the words "viscous" + "elastic"; a viscoelastic 
material exhibits both viscous and elastic behaviour – a bit like a fluid and a bit like a 
solid.  One can build up a model of linear viscoelasticity by considering combinations of 
the linear elastic spring and the linear viscous dash-pot.  These are known as rheological 
models or mechanical models.   
 
The Linear Elastic Spring 
 
The constitutive equation for a material which responds as a linear elastic spring of 
stiffness E  is (see Fig. 10.3.1) 
 


E

1
                                                         (10.3.1) 

 
The response of this material to a creep-recovery test is to undergo an instantaneous 
elastic strain upon loading, to maintain that strain so long as the load is applied, and then 
to undergo an instantaneous de-straining upon removal of the load. 
 

 
 

Figure 10.3.1: the linear elastic spring 
 
 
The Linear Viscous Dash-pot 
 
Imagine next a material which responds like a viscous dash-pot; the dash-pot is a piston-
cylinder arrangement, filled with a viscous fluid, Fig. 10.3.2 – a strain is achieved by 
dragging the piston through the fluid.  By definition, the dash-pot responds with a strain-
rate proportional to stress: 
 




 1
                                                          (10.3.2) 

 
where   is the viscosity of the material.  This is the typical response of many fluids; the 
larger the stress, the faster the straining (as can be seen by pushing your hand through 
water at different speeds). 


E

 
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Figure 10.3.2: the linear dash-pot 
 
The strain due to a suddenly applied load o  may be obtained by integrating the 

constitutive equation 10.3.2.  Assuming zero initial strain, one has 
 

to




                                                          (10.3.3) 

 
The strain is seen to increase linearly and without bound so long as the stress is applied, 
Fig. 10.3.3.  Note that there is no movement of the dash-pot at the onset of load; it takes 
time for the strain to build up.  When the load is removed, there is no stress to move the 
piston back through the fluid, so that any strain built up is permanent.  The slope of the 
creep-line is  /o . 

 

 
 

Figure 10.3.3: Creep-Recovery Response of the Dash-pot 
 
The relationship between the stress and strain during the creep-test may be expressed in 
the form  
 

 


 t
tJtJt o  )(),()(                                             (10.3.4) 

 
J  here is called the creep (compliance) function ( EJ /1  for the elastic spring). 
 
 
10.3.2 The Maxwell Model 
 
Consider next a spring and dash-pot in series, Fig. 10.3.4.  This is the Maxwell model.  
One can divide the total strain into one for the spring ( 1 ) and one for the dash-pot ( 2 ).  
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Equilibrium requires that the stress be the same in both elements.  One thus has the 
following three equations in four unknowns1: 

 

2121 ,
1

,
1 


  

E
                            (10.3.5) 

 
To eliminate 1  and 2 , differentiate the first and third equations, and put the first and 
second into the third: 
 

  
E

           Maxwell Model               (10.3.6) 

 
This constitutive equation has been put in what is known as standard form – stress on 
left, strain on right, increasing order of derivatives from left to right, and coefficient of   
is 1. 
 

 
 

Figure 10.3.4: the Maxwell Model 
 
 
Creep-Recovery Response 
 
Consider now a creep test.  Physically, when the Maxwell model is subjected to a stress 

0 , the spring will stretch immediately and the dash-pot will take time to react.  Thus the 

initial strain is Eo /)0(   .  Using this as the initial condition, an integration of 10.3.6 

(with a zero stress-rate2) leads to 

                                                 
1 If one considers an actual spring of length L1 and a dashpot of length L2 as in Fig. 10.3.4, and 
corresponding elongations d1 and d2 due to strains ε1 and ε2, the total elongation would be 

)( s d s s d dL L LL    , which is not quite the same as Eqn. 10.3.5c. It is best to think of the Maxwell 

model as: the total strain at a material particle can be decomposed additively according to Eqn. 10.3.5c, 
with the separate strains being linear elastic and viscous; Fig. 10.3.4 is simply an attempt to visualise this 
concept. 
2 there is a jump in stress from zero to o  when the load is applied, implying an infinite stress-rate  .  

One is not really interested in this jump here because the corresponding jump in strain can be predicted 
from the physical response of the spring.  One is more interested in what happens just "after" the load is 

applied.  In that sense, when one speaks of initial strains and stress-rates, one means their values at 0 , just 

after 0t ;  the stress-rate is zero from 0  on.  To be more precise, one can deal with the sudden jump in 
stress by integrating the constitutive equation across the point 0t  as follows: 

   )()()()()()/(
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In the limit as 0 , the integral tends to zero (  is finite), the values of stress and strain at 0 , i.e. in 
the limit as 0  from the left, are zero.  All that remains are the values to the right, giving 


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                                      (10.3.7) 

 
The creep-response can again be expressed in terms of a creep compliance function: 
 

E

t
tJtJt o

1
)(where)()( 


                             (10.3.8) 

 
When the load is removed, the spring again reacts immediately, but the dash-pot has no 
tendency to recover.  Hence there is an immediate elastic recovery Eo / , with the creep 

strain due to the dash-pot remaining.  The full creep and recovery response is shown in 
Fig. 10.3.5. 
 
The Maxwell model predicts creep, but not of the ever-decreasing strain-rate type.  There 
is no anelastic recovery, but there is the elastic response and a permanent strain. 
 

 
 

Figure 10.3.5: Creep-Recovery Response of the Maxwell Model 
 
 
Stress Relaxation 
 
In the stress relaxation test, the material is subjected to a constant strain 0  at 0t .  The 

Maxwell model then leads to {▲Problem 1} 
 

E
tEetEtEt R

tt
o

R
   ,)(where)()( /                           (10.3.9) 

 
Analogous to the creep function J for the creep test, )(tE  is called the relaxation 
modulus function. 
 

                                                                                                                                                  
)(0)0(    E , as expected.  One can deal with this sudden behaviour more easily using integral 

formulations or with the Laplace Transform (see §10.4, §10.5) 
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The parameter Rt  is called the relaxation time of the material and is a measure of the 
time taken for the stress to relax; the shorter the relaxation time, the more rapid the stress 
relaxation. 
 
 
10.3.3 The Kelvin (Voigt) Model 
 
Consider next the other two-element model, the Kelvin (or Voigt) model, which consists 
of a spring and dash-pot in parallel, Fig. 10.3.6.  It is assumed there is no bending in this 
type of parallel arrangement, so that the strain experienced by the spring is the same as 
that experienced by the dash-pot.  This time, 

 

2121 ,
1

,
1 


  

E
                                     (10.3.10) 

 
where 1  is the stress in the spring and 2  is the dash-pot stress.  Eliminating 21,  
leaves the constitutive law 
 

  E      Kelvin (Voigt) Model             (10.3.11) 
 
 

 
 

Figure 10.3.6: the Kelvin (Voigt) Model 
 
 
Creep-Recovery Response 
 
If a load 0  is applied suddenly to the Kelvin model, the spring will want to stretch, but 

is held back by the dash-pot, which cannot react immediately.  Since the spring does not 
change length, the stress is initially taken up by the dash-pot.  The creep curve thus starts 
with an initial slope  /o . 

 
Some strain then occurs and so some of the stress is transferred from the dash-pot to the 
spring.  The slope of the creep curve is now  /2 , where 2  is the stress in the dash-

pot, with 2  ever-decreasing.  In the limit when 02  , the spring takes all the stress 

and thus the maximum strain is Eo / . 

 
Solving the first order non-homogeneous differential equation 10.3.11 with the initial 
condition 0)0(   gives 
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 tEo e
E

t )/(1)( 
                                           (10.3.12) 

 
which agrees with the above  physical reasoning; the creep compliance function is now 
 

 
E

te
E

tJ R
tt R


  ,1

1
)( /                                    (10.3.13) 

 
The parameter Rt , in contrast to the relaxation time of the Maxwell model, is here called 
the retardation time of the material and is a measure of the time taken for the creep 
strain to accumulate; the shorter the retardation time, the more rapid the creep straining. 
 
When the Kelvin model is unloaded, the spring will want to contract but again the dash 
pot will hold it back.  The spring will however eventually pull the dash-pot back to its 
original zero position given time and full recovery occurs. 
 
Suppose the material is unloaded at time t .  The constitutive law, with zero stress, 
reduces to   E0 .  Solving leads to 

 
tECet )/()(                                                (10.3.14) 

 
where C is a constant of integration.  The t here is measured from the point where "zero 
load" begins.  If one wants to measure time from the onset of load, t must be replaced 
with t .  From Eqn. 10.3.12, the strain at t  is   )/(1)/()( E

o eE  .  Using 

this as the initial condition, one finds that  
 

      tee
E

t EtEo ,1)( )/()/(                             (10.3.15) 

 
The creep and recovery response is shown in Fig. 10.3.7.  There is a transient-type creep 
and anelastic recovery, but no instantaneous or permanent strain. 
 

 
 

Figure 10.3.7: Creep-Recovery Response of the Kelvin (Voigt) Model 
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Stress Relaxation  
 
Consider next a stress-relaxation test.  Setting the strain to be a constant 0 , the 

constitutive law 10.3.11 reduces to 0 E .  Thus the stress is taken up by the spring 

and is constant, so there is in fact no stress relaxation over time.  Actually, in order that 
the Kelvin model undergoes an instantaneous strain of 0 , an infinite stress needs to be 

applied, since the dash-pot will not respond instantaneously to a finite stress3. 
 
 
10.3.4 Three – Element Models 
 
The Maxwell and Kelvin models are the simplest viscoelastic models.  More realistic 
material responses can be modelled using more elements.  The four possible three-
element models are shown in Fig. 10.3.8 below.  The models of Fig. 10.3.8a-b are 
referred to as “solids” since they react instantaneously as elastic materials and recover 
completely upon unloading.  The models of Figs. 10.3.8c-d are referred to as “fluids” 
since they involve dashpots at the initial loading phase and do not recover upon 
unloading.  
 
The differential constitutive relations for the Maxwell and Kelvin models were not to 
difficult to derive.  However, even with three elements, deriving them can be a difficult 
task.  This is because one needs to eliminate variables from a set of equations, one or 
more of which is a differential equation (for example, see 10.3.5).  The task is more easily 
accomplished using integral formulations and the Laplace transform, which are discussed 
in §10.4-§10.5. 
 
Only results are given here: the constitutive relations for the four models shown in Fig. 
10.3.8 are 
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    (10.3.16) 

 
The response of these models can be determined by specifying stress (strain) and solving 
the differential equations 10.3.16 for strain (stress). 
 

                                                 
3 the stress required is )()0( 0 t  , where )(t  is the Dirac delta function (this can be determined 

using the integral representations of §10.4) 
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Figure 10.3.8: Three-element Models: (a) Standard Solid I, (b) Standard Solid II, (c) 
Standard Fluid I, (d) Standard Fluid II  

 
 
10.3.5 The Creep Compliance and the Relaxation Modulus 
 
The creep compliance function and the relaxation modulus have been mentioned in the 
context of the two-element models discussed above.  More generally, they are defined as 
follows: the creep compliance is the strain due to unit stress: 
 

1  when  )()(),()(  oo tJttJt         Creep Compliance     (10.3.17) 

 
The relaxation modulus is the stress due to unit strain:  

 
1  when  )()(),()(  oo tEttEt       Relaxation Modulus    (10.3.18) 

 
Whereas the creep function describes the response of a material to a creep test, the 
relaxation modulus describes the response to a stress-relaxation test. 
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10.3.6 Generalized Models 
 
More complex models can be constructed by using more and more elements.  A complex 
viscoelastic rheological model will usually be of the form of the generalized Maxwell 
model or the generalized Kelvin chain, shown in Fig. 10.3.9.  The generalized Maxwell 
model consists of N  different Maxwell units in parallel, each unit with different 
parameter values.  The absence of the isolated spring would ensure fluid-type behaviour, 
whereas the absence of the isolated dash-pot would ensure an instantaneous response.  
The generalised Kelvin chain consists of a chain of Kelvin units and again the isolated 
spring may be omitted if a fluid-type response is required. 
 
In general, the more elements one has, the more accurate a model will be in describing the 
response of real materials.  That said, the more complex the model, the more material 
parameters there are which need to be evaluated by experiment – the determination of a 
large number of material parameters might be a difficult, if not an impossible, task. 
 

 
 

Figure 10.3.9: Generalised Viscoelastic Models 
 
In general, a linear viscoelastic constitutive equation will be of the general form 

 
( ) ( )
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(10.3.19) 
 

 

E 

 

 1E N
E

N


1


Generalized 
Kelvin Chain 



 



E 

1 E 

1  

N
E

N


Generalized 
Maxwell Model 



Section 10.3 

Solid Mechanics Part I                                                                                Kelly 301

The more elements (springs/dashpots) one uses, the higher the order of the differential 
equation. 
 
Eqn. 10.3.19 is sometimes written in the short-hand notation 

 
 QP                                                      (10.3.20) 

 
where P  and Q  are the linear differential operators 
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, QP                                    (10.3.21) 

 
A viscoelastic model can be created by simply entering values for the coefficients ip , iq , 

in 10.3.19, without referring to any particular rheological spring – dashpot arrangement.  
In that sense, springs and dashpots are not necessary for a model, all one needs is a 
differential equation of the form 10.3.19.  However, the use of springs and dashpots is 
helpful as it gives one a physical feel for the way a material might respond, rather than 
simply using an abstract mathematical expression such as 10.3.19. 
 
 
10.3.7 Non-Linear Models 
 
More realistic material responses can be achieved by using non-linear models. For 
example, the springs of the previous section can be replaced with more general non-linear 
stress-strain relations of the form: 
 

nE                                                     (10.3.22) 
 
Various non-linear expressions for dash-pots can also be used, for example, 
 

0/,nA Ae                                            (10.3.23) 
 
Material data will certainly be better matched by such non-linear expressions; however, 
of course, they will result in non-linear differential equations which will be more difficult 
to solve than their linear counterparts. 
 
 
10.3.8 Problems 
 
1. Derive the Relaxation Modulus )(tE  for the Maxwell material. 
 
2. What are the values of the coefficients ii qp ,  in the general differential equation 

10.3.19 for  
(a) the Maxwell model and the Kelvin model? 
(b) The three-element models 
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10.3b Retardation and Relaxation Spectra 
 
Generalised models can contain many parameters and will exhibit a whole array of 
relaxation and retardation times.  For example, consider two Kelvin units in series, as in 
the generalised Kelvin chain; the first unit has properties 11 ,E  and the second unit has 

properties 22 ,E .  Using the methods discussed in §10.4-§10.5, it can be shown that he 
constitutive equation is 
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Consider the case of specified stress, so that this is a second order differential equation in 

)(t .  The homogeneous solution is {▲Problem 3} 
 

21 //)( RR tttt
h BeAet                                           (10.3.25) 

 
where 22

2
11

1 /,/ EtEt RR    are the eigenvalues of 10.3.24.  For a constant load 0 , 

the full solution is {▲Problem 3} 
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Thus, whereas the single Kelvin unit has a single retardation time, Eqn. 10.3.13, this 
model has two retardation times, which are the eigenvalues of the differential constitutive 
equation.  The term inside the square brackets is evidently the creep compliance of the 
model. 
 
Note that, for constant strain, the model predicts a static response with no stress relaxation 
(as in the single Kelvin model). 
 
In a similar way, for N units, it can be shown that the response of the generalised Kelvin 
chain to a constant load 0  is, neglecting the effect of the free spring/dashpot, of the form 
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where iiE ,  are the spring stiffness and dashpot viscosity of Kelvin element i , 

Ni 1 , Fig. 10.3.9.  The response of real materials can be modelled by allowing for a 
number of different retardation times of different orders of magnitude, e.g. 

  ,10,10,1,10, 211i
Rt .  

 
If one considers many elements, Eqn. 10.3.27 can be expressed as 
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If one is to obtain the same order of magnitude of strain for applied stress, these 's  
will have to get smaller and smaller for increasing number of Kelvin units.  In the limit as 

N , letting  / R Rd d dt dt  , one has, changing the dummy variable of integration 

from Rdt  to  , and letting   /R Rt d dt  , 

 

   /
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0

( ) 1 tt e d    
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                                       (10.3.29) 

 
The representation 10.3.29 allows for a continuous retardation time, in contrast to the 
discrete times of the model 10.3.27.  The function     is called the retardation 

spectrum of the model.  Different responses can be modelled by simply choosing 
different forms for the retardation spectrum. 
 
An alternative form of Eqn. 10.3.29 is often used, using the fact that  / lnd d   : 
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where   . 
 
A similar analysis can be carried out for the Generalised Maxwell model.  For two 
Maxwell elements in parallel, the constitutive equation can be shown to be 
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Consider the case of specified strain, so that this is a second order differential equation in 

)(t .  The homogeneous solution is, analogous to 10.3.25, {▲Problem 4} 
 

21 //)( RR tttt
h BeAet                                           (10.3.32) 

 
where again 22

2
11

1 /,/ EtEt RR   , and are the eigenvalues of 10.3.31.  For a constant 

strain 0 , the full solution is {▲Problem 4} 

 

 21 /
2

/
10)( RR tttt eEeEt                                        (10.3.33) 

 
Thus, whereas the single Maxwell unit has a single relaxation time, Eqn. 10.3.9, this 
model has two relaxation times, which are the eigenvalues of the differential constitutive 
equation.  The term inside the square brackets is evidently the relaxation modulus of the 
model. 
 
By considering a model with an indefinite number of Maxwell units in parallel, each with 
vanishingly small elastic moduli iE , one has the expression analogous to 10.3.29, 
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and  Rt  is called the relaxation spectrum of the model. 
 
To complete this section, note that, for the two Maxwell units in parallel, a constant stress 

0  leads to the creep strain {▲Problem 5} 
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Problems 
 
3. Consider two Kelvin units in series, as in the generalised Kelvin chain; the first unit 

has properties 11 ,E  and the second unit has properties 22 ,E .  The constitutive 
equation is given by Eqn. 10.3.24. 

(a) The homogeneous equation is of the form 0  CBA  .  By considering the 
characteristic equation 02  CBA  , show that the eigenvalues are 

1 1 2 2/ , /E E      and hence that the homogeneous solution is 10.3.25. 

(b) Consider now a constant load 0 . Show that the particular solution is 

  21210 /)( EEEEt   . 

(c) One initial condition of the problem is that 0)0(  .  The second condition 
results from the fact that only the dashpots react at time 0t  (equivalently, one 
can integrate the constitutive equation across 0t  as in the footnote in §10.3.2).  
Show that this condition leads to   21210 /)0(   . 

(d) Use the initial conditions to show that the constants in 10.3.24 are given by 

2010 /,/ EBEA    and hence that the complete is given by 10.3.26. 

(e) Consider again the constitutive equation 10.3.24.  What values do the constants 

22 ,E  take so that it reduces to the single Kelvin model, Eqn. 10.3.11. 
 
4. Consider two Maxwell units in parallel, as in the generalised Maxwell model; the first 

unit has properties 11 ,E  and the second unit has properties 22 ,E .  The constitutive 
equation is given by Eqn. 10.3.31. 
(a) Suppose we have a prescribed strain history and we want to determine the stress. 

The homogeneous equation is of the form 0  CBA  .  By considering 
the characteristic equation 02  CBA  , show that the eigenvalues are 

22
2

11
1 /,/ EtEt RR    and hence that the homogeneous solution is 10.3.32. 

(b) Consider now a constant load 0 . Show that the particular solution is zero. 

(c) One initial condition results from the fact that only the springs react at time 0t , 
which leads to the condition  210)0( EE   .  A second condition can be 
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obtained by integrating the constitutive equation across 0t  as in the footnote in 
§10.3.2.  Show that this leads to the condition   02

2
21

2
1 //)0(  EE  . 

(d) Use the initial conditions to show that the constants in 10.3.32 are given by 

0201 ,  EBEA   and hence that the complete solution is given by 10.3.33. 

(e) Consider again the constitutive equation 10.3.31.  What values do the constants 

22 ,E  take so that it reduces to the single Maxwell model, Eqn. 10.3.6. 
 
5. Consider again the two Maxwell units in parallel, as in Problem 4. This time consider 

a stress-driven problem. 
(a) From the constitutive equation 10.3.31, the differential equation to be solved is of 

the form ...A B    .  By considering the characteristic equation 02   BA , 
show that the eigenvalues are 
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
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and hence that the homogeneous solution is RtteCCt /
21)(   where 

2/1 Rt . 

(b) Consider now a constant stress 0 .  By using the condition that only the springs 

react at time 0t , show that the particular solution is  210 /  t . 

(c) One initial condition results from the fact that only the springs react at time 0t , 
which leads to the condition  210 /)0( EE   .  A second condition can be 

obtained by integrating the constitutive equation across 0t  as in the footnote in 
§10.3.2.  Be careful to consider all terms in 10.3.31. Show that this leads to the 
condition 

     0 1 1 2 2 1 2 1 2(0 ) ( / ) / / / 1 /Rt E E E E             . 

(d) Use the initial conditions to show that the complete solution is given by 10.3.35. 
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10.4 The Hereditary Integral 
 
In the previous section, it was shown that the constitutive relation for a linear viscoelastic 
material can be expressed in the form of a linear differential equation, Eqn. 10.3.19.  Here 
it is shown that the stress-strain relation can also be expressed in the form of an integral, 
called the hereditary integral.  Quite a few different forms of this integral are commonly 
used; to begin this section, the different forms are first derived for the Maxwell model, 
before looking at the more general case(s). 
 
 
10.4.1 An Example: the Maxwell Model 
 
Consider the differential equation for the Maxwell model, Eqn. 10.3.6, 
 

 
dt

d
E

E

dt

d 



                                                 (10.4.1) 

 
The first order differential equation can be solved using the standard integrating factor 
method.  This converts 10.4.1 into an integral equation.  Three similar integral equations 
will be derived in what follows1. 
 
Hereditary Integral over  t,  
 
It is sometimes convenient to regard 10.4.1 as a differential equation over the time 
interval  t, , even though the time interval of interest is really  t,0 .  This can make it 
easier to deal with sudden “jumps” in stress or strain at time 0t .  The initial condition 
on 10.4.1 is then 
 

  0 .                                                     (10.4.2)   
 
Using the integrating factor /Ete , re-write 10.4.1 in the form 
 

 
dt

td
Eete
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d EtEt )(
)( //                                              (10.4.3) 

 
Integrating both sides over  t̂,  gives 
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or 
 

                                                 
1 note that Eqn. 10.4.1 predicts that sudden changes in the strain-rate,  , will lead to sudden changes in the 
stress-rate,  , but the stress   will remain continuous.  The strain   does not appear explicitly in 10.4.1; 
sudden changes in strain can be dealt with by (i) integrating across the point where the jump occurs, or (ii) 
using step functions and the integral formulation (see later) 
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Changing the notation,  
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where )(tE , the relaxation modulus for the Maxwell model, is 
 

/)( EtEetE                                                      (10.4.7) 
 
This is known as a hereditary integral; given the strain history over  t, , one can 
evaluate the stress at the current time.  It is the same constitutive equation as Eqn. 10.4.1, 
only in a different form. 
 
Hereditary Integral over  t0,  
 
The hereditary integral can also be expressed in terms of an integral over  t,0 .  Let there 
be a sudden non-zero strain )0(  at 0t , with the strain possibly varying, but  
continuously, thereafter.  The strain, which in Eqn. 10.4.6 is to be regarded as a single 
function over  t,  with a jump at 0t , is sketched in Fig. 10.4.1. 
 
 

 
 

Figure 10.4.1: Strain with a sudden jump to a non-zero strain at 0t  
 
There are two ways to proceed.  First, write the integral over three separate intervals: 
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With 0)( t  over   , , the first integral is zero.  With a jump in strain only at 

0t , the integrand in the third integral remains finite.  The second integral can be 
evaluated by considering the function )(tf  illustrated in Fig. 10.4.2, a straight line with 
slope  2/)0( .  As 0 , it approaches the actual strain function )(t , which jumps to 

)0(  at 0t .  Then 
 

)(t

0
t

)0(
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Figure 10.4.2: A function used to approximate the strain for a sudden jump 
 
Using the approximation xex  1  for small x, the value of this integral is  /)0( EtEe .  
Thus Eqn. 10.4.6 can be expressed as 
 

  

 d

d

d
tEtEt

t

 
0

)(
)0()()(                               (10.4.10) 

 
By “0” here in the lower limit of the integral, one means 0 , just after any possible non-
zero initial strain.  In that sense, the strain  t  in Eqn. 10.4.10 is to be regarded as a 

continuous function, i.e. with no jumps over  t,0 .  Jumps in strain after 0t  can be 
dealt with in a similar manner. 
 
A second and more elegant way to arrive at Eqn. 10.4.10 is to re-express the above 
analysis in terms of the Heaviside step function )(tH  and the Dirac delta function )(t  
(see the Appendix to this section for a discussion of these functions). 
 
The function sketched in Fig. 10.4.1 can be expressed as )()( ttH   where now )(t  is to 

be regarded as a continuous function over  , t  – the jump is now contained within the 

step function )(tH .  Eqn. 10.4.6 now becomes 
 

        




 d

d

dH
tEd

d

d
HtEt

tt




 )(
)(

)(             (10.4.11) 

 
The first integral becomes the integral in 10.4.10.  From the brief discussion in the 
Appendix to this section, the second integral becomes  
 

          )0()()( 

 tEdtEd

d

dH
tE

tt

 


            (10.4.12) 

 
 
A Third Hereditary Integral 
 
Finally, the integral can also be expressed as a function of )(t , rather than its derivative.  
To achieve this, one can integrate 10.4.10 by parts: 
 

)(tf

 

)0(
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  



t

d
td

tdE
tEt

0 )(

)(
)()0()( 


                                (10.4.13) 

 
This can be expressed as 
 

  
t

dtRtEt
0

)()()0()(                                  (10.4.14) 

 
where dttdEtR /)()(  . 
 
Note that integration by parts is only possible when there are no “jumps” in the functions 
under the integral sign and this is assumed for the integrand in 10.4.10.  If there are 
jumps, the integral can either be split into separate integrals as in 10.4.8, or the functions 
can be represented in terms of step functions, which automatically account for jumps. 
 
The formulae 10.4.6, 10.4.10 and 10.4.14 give the stress as functions of the strain.  
Similar formulae can be derived for the strain in terms of the stress (see the Appendix to 
this Section). 
 
Relaxation Test 
 
To illustrate the use of the hereditary integral formulae, consider a relaxation test, where 
the strain history is given by 
 



 


otherwise,

0,0
)(

0


t
t                                            (10.4.15) 

 
Expressing the strain history as )()( 0 tHt   , Eqn. 10.4.6 gives 

 

  )()()( 00 tEdtEt
t

  


                               (10.4.16) 

 
From 10.4.10, with the derivative in the integrand zero, one has )()0()()( 0 tEtEt   .  

Finally, from 10.4.14, with    /2 /)( EteEtR  , one again has  
 

)()( 0
/

0

0

/)(
2

00 tEEede
E

Et Et
t

tE 


                     (10.4.17) 

 
 
10.4.2 Hereditary Integrals: General Formulation 
 
Although derived for the Maxwell mode, these formulae Eqns. 10.4.6, 10.4.10, 10.4.14, 
are in fact quite general, for example they can be derived from the differential equation 
for the Kelvin model (see Appendix to this section). 
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The hereditary integrals were derived directly from the Maxwell model differential 
equation so as to emphasis that they are one and the same constitutive equation.  Here 
they are derived more generally from first principles. 
 
The strain due to a constant step load )0(  applied at time 0t  is by definition 

)()0()( tJt   , where )(tJ  is the creep compliance function.  The strain due to a second 
load,   say, applied at some later time  , is )()(   tJt .  The total strain due to 
both loads is2, Fig. 10.4.3, 

 
)()()0()(   tJtJt                                         (10.4.18) 

 
 

 
 

Figure 10.4.3: Superposition of loads 
 
Generalising to an indefinite number of applied loads of infinitesimal magnitude, id , 

one has 
 







1

)()()0()(
i

ii tJdtJt                                     (10.4.19) 

 

In the limit, the summation becomes the integral  dtJ  )( , or3 (see Fig. 10.4.4) 

 

 
t

d
d

d
tJtJt

0

)(
)()()0()( 


    Hereditary Integral (for Strain)  (10.4.20) 

 
 

                                                 
2 this is again an application of the linear superposition principle, mentioned in  §6.1.2; because the material 
is linear (and only because it is linear), the "effect" of a sum of "causes" is equal to the sum of the 
individual "effects" of each "cause" 
3 this integral equation allows for a sudden non-zero stress at 0t .  Other jumps in stress at later times can 
be allowed for in a similar manner – one would split the integral into separate integrals at the point where 
the jump occurs 

 

t

t



)(   tJ


)0(

)()0( tJ
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Figure 10.4.4: Formation of the hereditary integral 
 
One can also derive a corresponding hereditary integral in terms of the relaxation 
modulus {▲Problem 1}: 
 

 
 
t

d
d

d
tEtEt

0

)()()0()( 

     Hereditary Integral (for Stress)   (10.4.21) 

 
This is Eqn. 10.4.10, which was derived specifically from the Maxwell model. 
 
The hereditary integrals only require a knowledge of the creep function (or relaxation 
function).  One does not need to construct a rheological model (with springs/dashpots) to 
determine a creep function.  For example, the creep function for a material may be 
determined from test-data from a creep test.  The hereditary integral formulation is thus  
not restricted to particular combinations of springs and dash-pots. 
 
Example 
 
Consider the Maxwell model and the two load histories shown in Fig. 10.4.5.  The 
maximum stress is the same in both, ̂ , but load (1) is applied more gradually.  
 

 
 

Figure 10.4.5: two stress histories 
 
Examine load (1) first.  The stress history is 

 

)(t

  d

d
id

t 
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t 

(2) ̂

T
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In the hereditary integral 10.4.20, the creep compliance function )(tJ  is given by 10.3.8, 

EttJ /1/)(   , and the stress is zero at time zero, so 0)0(  .  The strain is then 
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For load history (2),  
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



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The strain is then 0)( t  for Tt  .  The hereditary integral 10.4.20 allows for a jump at 

0t .  For a jump from zero stress to a non-zero stress at Tt   it can be modified to 
 














E

Tt
TtJTt

1
ˆ)()()(


  

 
which is less than the strain due to load (1). (Alternatively, one could use the Heaviside 
step function and let )(ˆ)( TtHt    in 10.4.20, leading to the same result,  

  )(ˆ)(ˆ)()0()(
0

TtJdTtJtJt
t

   .) 

 
This example illustrates two points: 
(1) the material has a "memory".  It remembers the previous loading history, responding 

differently to different loading histories 
(2) the rate of loading is important in viscoelastic materials.  This result agrees with an 

observed phenomenon: the strain in viscoelastic materials is larger for stresses which 
grow gradually to their final value, rather than when applied more quickly4. 

                                                 
4 for the Maxwell model, if one applied the second load at time 2/Tt  , so that the total stress applied in 
(1) and (2) was the same, one would have obtained the same response after time T, but this is not the case in 
general 
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10.4.3 Non-linear Hereditary Integrals 
 
The linear viscoelastic models can be extended into the non-linear range in a number of 
ways.  For example, generalising expressions of the form 10.4.14,  
 

      
t

dtftRtft
0

21 )()(                                     (10.4.22) 

 
where 21 , ff  are non-linear functions of the strain history.  The relaxation function can 
also be assumed to be a function of strain as well as time: 
 

      
t

dtftKtft
0

21 ),()(                                   (10.4.23) 

 
 
10.4.4 Problems 
 
1. Derive the hereditary integral 10.4.21, 

 
 
t

d
d

d
tEtEt

0

)()()0()( 

  

 
2. Use the hereditary integral form of the constitutive equation for a linear viscoelastic 

material, Eqn. 10.4.20, to evaluate the response of a material with creep compliance 
function 

)1ln()(  ttJ  

to a load )1()( Btt o   .  Sketch )(tJ , which of course gives the strain response 

due to a unit load 1)( t .  Sketch also the load )(t and the calculated strain )(t .  

[note:   tbbtbtbdxxb
t

 )1ln()1()1ln()1(1)(ln
0

] 

 
3. A creep test was carried out on a certain linear viscoelastic material and the data was 

fitted approximately by the function 
 tet 21ˆ)(   , 

where ̂  was the constant applied load. 
(i) Sketch this strain response over 30  t  (very roughly, with 1ˆ  ). 
(ii) Which of the following three rheological models could be used to model the 

material: 
(a) the full generalized Kelvin chain of Fig. 10.3.9 
(b) the Kelvin chain minus the free spring 
(c) the generalized Maxwell model minus the free spring and free dash-pot 

Give reasons for your choice (and reasons for discounting the other two). 
(iii) For the rheological model you chose in part (ii), roughly sketch the response to a 

standard creep-recovery test (the response during the loading phase has already 
been done in part (i)). 

(iv) Find the material’s response to a load 1)( 2  tt . 
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4. Determine the strain response of the Kelvin model to a stress history which is 

triangular in time: 
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10.4.5 Appendix to §10.4 
 
 
1. The Heaviside Step Function and the Dirac Delta Functions 
 
The Heaviside step function )(tH  is defined through 
 


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atH
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,2/1

,0

)(                                            (10.4.24) 

 
and is illustrated in Fig. 10.4.6a.  The derivative of the Heaviside step function, dtdH / , 
can be evaluated by considering )( atH   to be the limit of the function )(tf  shown in 
Fig. 10.4.6b as 0 .  This derivative dtdf /  is shown in Fig. 10.4.6c and in the limit is  
 

)(lim
)(

0
at

dt

df

dt

atdH








                                          (10.4.25) 

 
where   is the Dirac delta function defined through (the integral here states that the 
“area” is unity, as illustrated in Fig. 10.4.6c) 
 



 
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otherwise0

,
)(

at
at ,         1





dtat                              (10.4.26) 

 
Integrals involving delta functions are evaluated as follows: consider the integral 
 

c 

t1 2t1 
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 dtbttg




)(                                                     (10.4.27) 

 
The delta function here is zero, and hence the integrand is zero, everywhere except at 

bt  .  Thus the integral is 
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Figure 10.4.6: The Heaviside Step Function and evaluation of its derivative 
 
 
2. The Maxwell Model: Functions of the Stress 
 
In §10.4.1, the hereditary integrals for the Maxwell model were derived for the stress in 
terms of integrals of the strain.  Here, they are derived for the strain in terms of integrals 
of the stress. 
 
Consider again the differential equation for the Maxwell model, Eqn. 7.3.6, 
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Edt

d
                                                (10.4.29) 

 
Direct integration gives 
 

   



t

dt
E

t 


 11
)(                                             (10.4.30) 

)( atH 

 t 0t

1
(a)

(b)

)(tf

(c)

)(tf 

2
1

1area 

a a



at  t

a a0t

0t

1



Section 10.4 

Solid Mechanics Part I                                                                                Kelly 316

 
Integrating by parts leads to 
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Bringing the first term inside the integral, 
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or 
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where the creep function is //1)( tEtJ  . 
 
If there is a jump in stress at 0t , 10.4.33 can be expressed as an integral over  t,0  by 
evaluating the contribution of the jump to the integral in 10.4.33: 
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leading to 
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Alternatively, one could also have simply let )()()( ttHt    in 10.4.33, again leading 

to the term           0 tJdtJ
t

 
. 

 
Finally, integrating by parts, one also has 
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where dttdJtS /)()(  . 
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3. The Kelvin Model: Functions of the Stress 
 
Consider the differential equation for the Kelvin model, Eqn. 10.3.11, 
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d
                                                  (10.4.37) 

 
Using the integrating factor /Ete , one has 
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Integrating both sides over  t̂,  gives 
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or 
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Changing the notation,  
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An integration by parts leads to 
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Finally, taking the free term inside the integral: 
 

    

 d

d

d
tJt

t



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where   EetJ Et /1)( /  is the creep compliance function for the Kelvin model. 
 
The other versions of the hereditary integral,. Eqn. 10.4.10, 10.4.14 can be derived from 
this as before. 
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10.5 Linear Viscoelasticity and the Laplace Transform 
 
The Laplace transform is very useful in constructing and analysing linear viscoelastic 
models. 
 
 
10.5.1 The Laplace Transform 
 
The formula for the Laplace transform of the derivative of a function is1: 

 

etc.),0()0()(

)0()(
2 fsffsfL

ffsfL







                         (10.5.1) 

 
where s is the transform variable, the overbar denotes the Laplace transform of the 
function, and )0(f  is the value of the function at time 0t .  The Laplace transform is 

defined in such a way that )0(f  refers to  0t , that is, just before time zero.  Some 
other important Laplace transforms are summarised in Table 10.5.1, in which   is a 
constant. 
 

)(tf  )(sf  
  s/  

)(tH  s/1  

)(  t  se   

)(t  s  
te   )/(1 s  

   /1 te  )(/1 ss   

  2/1/  tet 
 

)(/1 2 ss   

nt  ,1,0,/! 1  nsn n  

Table 10.5.1: Laplace Transforms 
 
Another useful formula is the time-shifting formula: 
 

  )()()( sfetHtfL s                                 (10.5.2) 
 
 
10.5.2 Mechanical models revisited 
 
The Maxwell Model 
 
The Maxwell model is governed by the set of three equations 10.3.5: 

                                                 
1 this rule actually only works for functions whose derivatives are continuous, although the derivative of the 
function being transformed may be piecewise continuous.  Discontinuities in the function or its derivatives 
introduce additional terms 
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                              (10.5.3) 

 
Taking Laplace transforms gives 
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E
                             (10.5.4) 

 
and it has been assumed that the strain 2  is zero at  0t .  The three differential 
equations have been reduced to a set of three algebraic equations, which may now be 
solved to get 
 

 ss
E

                                                 (10.5.5) 

 
Transforming back then gives Eqn. 10.3.6: 

 

  
E

                                                 (10.5.6) 

 
Now examine the response to a sudden load.  When using the Laplace transform, the load 
is written as )()( tHt o  , where )(tH  is the Heaviside step function (see the 

Appendix to the previous section).  Then 10.5.6 reads 
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E

tH oo                                       (10.5.7) 

 
Using the Laplace transform gives 
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     (10.5.8)
 

 
which is the same result as before, Eqn. 10.3.7-8.  Subsequent unloading, at time t  
say, can be dealt with most conveniently by superimposing another load 

)()(   tHt o  onto the first.  Putting this into the constitutive equation and using 

the Laplace transform gives 
 

soso e
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e
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11
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                              (10.5.9) 

 
Transforming back, again using the time-shifting rule, gives 
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Adding this to the strain due to the first load then gives the expected result 
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The Kelvin Model 
 
Taking Laplace transforms of the three equations for the Kelvin model, Eqns. 10.3.10, 
gives  sE  , which yields 10.3.11,   E .  The response to a load 

)()( tHt o   is 
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The response to another load of magnitude )()(   tHt o  is 
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The response to both loads now gives the complete creep and recovery response: 
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                            (10.5.14) 

 
To analyse the response to a suddenly applied strain, substitute )()( tHt o   into the 

constitutive equation    E  to get )()( 00 ttHE   , which shows that the 

relaxation modulus of the Kelvin model is 
 

)()( tEtE                                          (10.5.15) 
 
The Standard Linear Model  
 
Consider next the standard linear model, which consists of a spring in series with a Kelvin 
unit, Fig. 10.5.1 (see Fig. 10.3.8a).  Upon loading one expects the left-hand spring to 
stretch immediately.  The dash pot then takes up the stress, transferring the load to the 
second spring as it slowly opens over time.  Upon unloading one expects the left-hand 
spring to contract immediately and for the right-hand spring to slowly contract, being held 
back by the dash-pot. 
 
The equations for this model are, from the figure,  



Section 10.5 

Solid Mechanics Part I                                                                                Kelly 321

 

22

221

11

21

21














E

E                                                   (10.5.16) 

 

 
 

Figure 10.5.1: the standard linear model 
 
One can eliminate the four unknowns from these five equations using the Laplace 
transform, giving 
 

   sEEEsEE 12121                               (10.5.17) 
 
which transforms back to (in standard form) 
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which is Eqn. 10.3.16a. 
 
The response to a load )()( tHt o   is  
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and the creep compliance is 
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Note that 1/)0( Eo   as expected. 

 
For recovery one can superimpose an opposite load onto the first, at time   say: 
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The response after time   is then 
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This is, as expected, simply the recovery response of the Kelvin unit.  The full response is 
as shown in Fig. 10.5.2.  This seems to be fairly close now to the response of a real 
material as discussed in §10.1, although it does not allow for a permanent strain. 
 

 
 

Figure 10.5.2: Creep-recovery response of the standard linear model 
 
Non-constant Loading 
 
The response to a complex loading history can be evaluated by solving the differential 
constitutive equation (or the corresponding hereditary integral).  The differential equation 
can be most easily solved using Laplace transforms.  
 
 
Example 
 
Consider the example treated earlier using hereditary integrals, at the end of §10.4.2.  
Load (1) of Fig. 10.4.5 can be thought of as consisting of the two loads (1a) tT )/ˆ(   
and (1b) )())(/ˆ( TtHTtT    applied at time Tt  .  Load (2) consists of a 
constant load applied at time Tt  . 

 
t t 
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For load (1a), 
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which gives the response for Tt  . 
 
For load (1b) one has [note:      0  ttL ] 
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The response after time T is then given by adding the two results: 
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10.5.3  Relationship between Creep and Relaxation 
 
Taking the Laplace transform of the general constitutive equation 10.3.19,  QP  , 
leads to 
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(10.5.23) 
 
which can also be written in the contracted form 

 
 )()( sQsP                                                   (10.5.24) 

 
where P  and Q are the polynomials 
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The Laplace transforms of the creep compliance  )()( sJtJ   and relaxation modulus 

 )()( sEtE   can be written in terms of these polynomials as follows.  First, the strain 
due to a unit load )(tH  is )(tJ .  Since s/1 , substitution into the above equation 
gives 
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Similarly, the stress due to a unit strain )(tH  is )(tE  and so 
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It follows that 
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1
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s
sEsJ                                                   (10.5.28) 

 
Thus, for a linear viscoelastic material, there is a unique and simple relationship between 
the creep and relaxation behaviour. 
 
 
10.5.4 Problems 
 
 
1. Check that the relation 10.5.28, 2/1)()( ssEsJ  , holds for the Kelvin model 
 
2. (a)  Derive the constitutive relation (in standard form) for the three-element model 

shown below using the Laplace transform (this is the Standard Fluid II of Fig. 
10.3.8d and the constitutive relation is given by Eqn. 10.3.16d) 

(b) Derive the creep compliance )(tJ  by considering a suddenly applied load. 
 

 

E
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10.6 Oscillatory Stress, Dynamic Loading and 
Vibrations 

 
Creep and relaxation experiments do not provide complete information concerning the 
mechanical behaviour of viscoelastic materials.  These experiments usually provide test 
data in the time-range from 10 seconds to 10 years.  It is often of interest to know the 
response of materials to loads of very short duration.  For example, duration of the impact 
of a steel ball on a viscoelastic block may be of the order of sec 10 5 1.  In order to be able 
to determine the response for such conditions, it is necessary to know the behaviour of a 
material at high rates of loading (or short duration loading). 
 
The techniques and apparatus for investigating the response of a material to very short 
term loading are different to those involved in longer-term testing.  For very  short time 
loading it is more convenient to use oscillatory than static loading, and in order to predict 
the behaviour of a viscoelastic material subjected to an oscillatory load, one needs to 
formulate the theory based on oscillatory stresses and strains. 
  
 
10.6.1 Oscillatory Stress 
 
Consider a dynamic load of the form 

 
)cos()( tt o                                                 (10.6.1) 

 
where o  is the stress amplitude and   is the angular frequency2.  Assume that the 

resulting strain is of the form3 
 

)cos()(   tt o                                           (10.6.2) 

 
so that the strain is an oscillation at the same frequency as the stress but lags behind by a 
phase angle  , Fig. 10.6.1.  This angle is referred to as the loss angle of the material, for 
reasons which will become clear later. 
 
Expanding the strain trigonometric terms, 
 

ttt oo  sinsincoscos)(                              (10.6.3) 

 
The first term here is completely in phase with the input; the second term is completely 
out of phase with the input.  If the phase angle   is zero, then the stress and strain are in 

                                                 
1 dynamic experiments usually provide data from about sec. 10 8  to about sec. 103  so there is a somewhat 
overlapping region where data can be obtained from both types of experiment 
2 when an oscillatory force is first applied, transient vibrations result at the natural frequency of the material 
–  these soon die out leaving the vibrations at the source frequency 
3 if one substitutes 10.6.1 into the general constitutive equation 10.3.17, one sees that the strain and its 
derivatives contain sine and cosine terms, so that the strain must be of the general form 

)sin()cos( tBtA   , where A and B are constants.  For convenience, this can be written as )cos( DtC   

where C and D are new constants 
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phase (as happens with an ideal elastic material), whereas if 2/  , the stress and strain 
are completely out of phase. 
 

 
 

Figure 10.6.1: Oscillatory stress and strain 
 
 
The Complex Compliance 
 
Define 
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so that 
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The quantities 1J  and 2J  are a measure of how in, or out of, phase the stress is with the 

strain. The former, 1J , is called the storage compliance and the latter, 2J , is called the 
loss compliance.  They are usually written as the components of a complex compliance, 

*J : 
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If one has a stress input in the form of a sine function, then 
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and again the storage compliance is a measure of the amount "in phase" and the loss 
compliance is a measure of the amount "out of phase". 
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The Complex Modulus 
 
One can also regard of the strain as the input and the stress as the output.  In that case one 
can write (  is again the phase angle by which the strain lags behind the stress) 
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This is in effect the same stress-strain relationship as that used above, only the 
stress/strain are shifted along the t-axis. 
 
Define next the two new quantities 
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so that 
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Again, these quantities are a measure of how much the response is in phase with the input.  
The former, 1E , is called the storage modulus and the latter, 2E , is called the loss 
modulus.  As with the compliances, they are usually written as the components of a 
complex modulus4, *E : 
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Again, if one has a sinusoidal strain as input, one can write 
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It is apparent from the above that  

 
1** EJ                                                    (10.6.13) 

 
which is a much simpler relationship than that between the creep compliance function and 
the relaxation modulus (which involved Laplace transforms, Eqn. 10.5.28). 
 
 
                                                 
4 typical values for the storage and loss moduli for a polymer would be around 1 10 MPaE  , 

2 0.1 MPaE  .  The ratio of the amplitudes is called the dynamic modulus, ooE  /*  .    
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Complex Formulation 
 
The above equations can be succinctly written using a complex formulation, using Euler's 
formula 
 

 sincos ie i                                               (10.6.14) 
 
For a stress input, 
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The creep compliance function )(tJ  is the strain response to a unit load.  In the same way, 

from 10.6.15,  the complex compliance *J  can be interpreted as the strain amplitude 
response to a sinusoidal stress input of unit magnitude. 
 
Similarly, for a strain input, one has 
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and the term in brackets is, by definition, the complex modulus *E . 
 
The relationship between the complex compliance/modulus and the 
differential constitutive equation 
 
Putting ti

oet  )(  and the resulting strain  ti
oet  )(  into the general differential 

operator form of the constitutive equation 10.3.19, one has 
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This equation thus gives the relationship between the complex compliance and the 
constants ii qp , .  A similar relationship can be found for the complex modulus: 
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Again one sees that 1** EJ . 
 
From 10.6.17-18, the complex compliance and complex modulus are functions of the 
frequency  , and thus, from the definitions 10.6.4, 10.6.6, 10.6.9, 10.6.11, so is the phase 
angle  .  Thus   is the primary variable influencing the viscoelastic properties (whereas 
time t was used for this purpose in the analysis of static loading). 
 
The relationship between the complex compliance/modulus and the creep 
compliance/ relaxation modulus 
 
It can be shown5 that the complex compliance )(* J  and the complex modulus )(* E  
are related to the creep compliance )(tJ  and relaxation modulus )(tE  through 
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Here, the Laplace transform is first taken and then evaluated at is   6. 
 
A Note on Frequency 
 
Frequencies below 0.1 Hz are associated with seismic waves.  Vibrations of structures and 
solid objects occur from about 0.1 Hz to 10 kHz depending on the size of the structure.  
Stress waves from 20 Hz to 20 kHz are perceived as sound - above 20 kHz is the 
ultrasonic range.  Frequencies above 1012 Hz correspond to molecular vibration and 
represent an upper limit for stress waves in real solids. 
 
 
10.6.2 Example: The Maxwell Model 
 
The constitutive equation for the Maxwell model is given by Eqn. 10.3.6, 
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Consider an oscillatory stress )cos( to   .  We thus have7  
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5 using Fourier transform theory for example 
6 1J  and 2J  are also related to each other (as are 1E  and 2E ) by an even more complicated rule known as 

the Kramers-Kronig relation 
7 the constant of integration is zero (assuming that the initial strain is that in the spring, Eo / ). 
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Thus the complex compliance is 
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This result can be obtained more easily using the relationship between the complex 
compliance and the constitutive equation: the constitutive equation can be rewritten as  
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From Eqn. 10.6.17, 
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Also, the complex modulus is related to the complex compliance through 10.6.13, 

** /1 JE  , so that 
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For very low frequencies, 0 , tt  /)sin( , and the response, as expected, reduces 

to that for a static load,   //1)( tEt o  . 

 
For very high frequencies, 0/1  , and the response is   )cos(/)( tEt o   .  Thus the 

strain is completely in-phase with the load, but the dash-pot is not moving – it has no time 
to respond at such high frequencies - the spring/dash-pot model is reacting like an isolated 
spring, that is, like a solid, with no fluid behaviour. 
 
 
10.6.3 Energy Dissipation 
 
Because the equations 10.6.12  
 

)sin()(),sin()(   tttt oo                       (10.6.26) 

 
are the parametric equations for an ellipse, that is, they trace out an ellipse for values of t,  
the stress-strain curve for an oscillatory stress is an elliptic hysteresis loop, Fig. 10.6.2. 
 
The work done in stressing a material (per unit volume) is given by 
 

 dW                                                (10.6.27) 

 
The energy lost W  through internal friction and heat is given by the area of the ellipse.  
Thus 
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where 1t  is some starting time and T is the period of oscillation,  /2T .  Substituting 
in Eqns. 10.6.26 for strain and stress then gives 
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Figure10.6.2: Elliptic Stress-Strain Hysteresis Loop 
 
Taking 01 t  then gives8 
 

 sinooW         Energy Loss                  (10.6.30) 

 
When 0 , the energy dissipated is zero, as in an elastic material.  It can also be seen 
that 
 

2
2
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and hence the names loss modulus and loss compliance. 
 
 
 
 
                                                 
8 the same result is obtained for )sin(),sin(   tt oo  or when the stress and strain are cosine 

functions 
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Damping Energy 
 
The energy stored after one complete cycle is zero since the material has returned to its 
original configuration.  The maximum energy stored during any one cycle can be 
computed by integrating the increment of work d  from zero up to a maximum stress, 
that is over one quarter the period T  of one cycle.  Thus, integrating from  /1 t   

(where 0 ) to  2/12  tt , Fig. 10.6.39 
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ooW                                        (10.6.32) 

 
The second term is 4/sin oo , which is one quarter of the energy dissipated per 

cycle, and so can be considered to represent the dissipated energy.  The remaining, first, 
term represents the area of the shaded triangle in Fig. 10.6.3 and can be considered to be 
the energy stored, 2/cos oosW   (it reduces to the elastic solution 2/ooW   

when 0 ). 
 
The damping energy of a viscoelastic material is defined as SWW / , where SW  is the 

maximum energy the system can store in a given stress/strain amplitude.  Thus (dividing 
W  by 4 so it is consistent with the integration over a quarter-cycle to obtain the stored 

energy) 
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Thus the damping ability of a linearly viscoelastic material is only dependent on the 
phase/loss angle  . 
 

 
 

Figure10.6.3: Elliptic Stress-Strain Hysteresis Loop 
 

                                                 
9 or one could integrate from zero to maximum strain, over   2/,0 , giving the same result 
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The quantity tan  is known as the mechanical loss, or the loss tangent.  It can be 
considered to be the fundamental measure of damping in a linear material (other 
measures, for example  tan2, , etc., are often used)10.  Typical values for a range of 
materials at various temperatures and frequencies are shown in Table 10.6.1. 
 

Material Temperature Frequency ( v ) Loss Tangent ( tan ) 
Sapphire 4.2 K 30 kHz 10105.2   
Sapphire rt 30 kHz 9105   
Silicon rt 20 kHz 8103   
Quartz rt 1 MHz 710  

Aluminium rt 20 kHz 510  
Cu-31%Zn rt 6 kHz 5109   

Steel rt 1 Hz 0005.0  
Aluminium rt 1 Hz 001.0  
Fe-0.6%V 33oC 0.95 Hz 0016.0  

Basalt rt 0.001-0.5 Hz 0017.0  
Granite rt 0.001-0.5 Hz 0031.0  
Glass rt 1 Hz 0043.0  
Wood rt  1 Hz 02.0  
Bone 37oC 1-100 Hz 01.0  
Lead rt 1-15 Hz 029.0  

PMMA rt 1 Hz 1.0  
Table 10.6.1: Loss Tangents of Common Materials11 

 
 
10.6.4 Impact 
 
Consider the impact of a viscoelastic ball dropped from a height dh  onto a rigid floor.  

During the impact, a proportion of the initial potential energy dmgh , which is now kinetic 

energy 2
2
1 mv , where v is the velocity at impact, is lost and only some is stored.  The 

stored energy is converted back to kinetic energy which drives the ball up on the rebound, 
reaching a height dr hh  , with final potential energy rmgh .  The ratio of the two heights 

is12 
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where sW  is the energy stored and dW  is the energy dissipated during the impact. 

 

                                                 
10 some investigators recommend that one uses the maximum storable energy when 0 , in which case 

the stored energy is 2/oo  and the damping measure would be 2/sin/  SWW  
11 from Table 7.1 of Viscoelastic Solids, by R. S. Lakes, CRC Press, 1999 
12 the coefficient of restitution e is defined as the ratio of the velocities before and after impact, dr vve / ,  

so 2f e . 
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The impact event can be approximated by a half-cycle of the oscillatory stress-strain 
curve, Fig. 10.6.4.  Integrating over   /,0  or   /)(,/  , one has13  
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and so the “height lost” is given by 
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Figure10.6.4: Impact approximated as a half-cycle of oscillatory stress and strain 
 
Note some other approximations made:  
(i) energy losses due to air resistance, friction and radiation of sound energy during 

impact have been neglected 
(ii) in a real impact, the stress and strain are both initially zero.  In the current analysis, 

when one of these quantities is zero, the other is finite, and this will inevitably 
introduce some error14.  

 
 
10.6.5 Damping of Vibrations  
 
The inertial force in many applications can be neglected.  However, when dealing with 
vibrations, the product of acceleration times mass can be appreciable when compared to 
the other forces present. 
 
Vibrational damping can be examined by looking at a simple oscillator with one degree of 
freedom, Fig. 10.6.5.  A mass m  is connected to a wall by a viscoelastic bar of length L  
and cross sectional area A .  The motion of the system is described by the equations 

                                                 
13 although it might be more accurate to integrate over   /)(,0   
14 as mentioned, there is a transient term involved in the oscillation which has been ignored, and which dies 
out over time, leaving the strain to lag behind the stress at a constant phase angle 
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Dynamic equation: 0 Fxm   
Kinematic relation: Lx /  
Constitutive relation: (depends on model) 
 

Assuming an oscillatory motion, ti
oexx  , and using the first two of these, 
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The quantity in brackets is the complex modulus *E  (see Eqn. 10.6.16). 
 
As an example, for the Maxwell model (see Eqn. 10.6.24) 
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and so 
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which can be solved to get 
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Figure10.6.5: Vibration 
 
If m  is small or E  is large (and /E  is not too large) the root has a real part, v  say, so 
that 

 
vEi  )2/(                                                    (10.6.41) 

 
and one has the damped vibration 
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If, on the other hand, the mass is large or the spring compliant, one gets a pure imaginary 
root, ivEi  )2/(  , so that i  is real (and less than zero) and one has the aperiodic 
damping 
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10.6.6 Problems  
 
1. Use the differential form of the constitutive equation for a linearly viscoelastic 

material to derive the complex compliance, the complex modulus, and the loss 
tangent for a Kelvin material. (put the first two in the form  i ).  Use your 
expression for the complex compliance to derive the strain response to a stress 

)cos( to  , in terms of   ,,,, Eto , in the form 

 tBtAt o  sincos)(   

What happens at very low frequencies?  
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10.7 Temperature-dependent Viscoelastic Materials 
 
Many materials, for example polymeric materials, have a response which is strongly 
temperature-dependent.  Temperature effects can be incorporated into the theory 
discussed thus far in a simple way by allowing for the coefficients of the differential 
constitutive equations to be functions of temperature.  Thus, Eqn. 10.3.19 can be 
expressed more generally as 
 

               2121 qqqppp oo         (10.7.1) 

 
where   denotes temperature.  Equivalently, one can allow for the creep and relaxation 
functions to be functions of temperature in the hereditary integral formulation.  Thus 
Eqns. 10.4.20-21 read 
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10.7.1 Example: The Maxwell Model 
 
Consider a Maxwell material whose dash-pot viscosity   is a function of temperature  .  
The differential constitutive equation is then 
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where E  is the temperature-independent spring stiffness.  This equation is a function of 
both temperature and time.  With temperature a function of time,  t  , it is a linear 
differential equation with non-constant coefficients.  For constant temperature, it has 
constant coefficients. 
 
Consider first the case of constant temperature.  The relaxation modulus and creep 
compliance functions can be evaluated by applying unit strain and unit stress.  From the 
previous work, one has 
 

     

   


 

t

E
tJ

E
teEtE R

tt R



 

1
,

,),( /

                                    (10.7.4) 

 
Thus any given material has temperature-dependent relaxation and creep functions. 
 
Consider now the change of variable 
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where A is any constant (which can be chosen arbitrarily for convenience – see later).  
This transforms Eqn. 10.7.3 into 
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This is now an equation with dependence on only one variable,  .  From this equation, 
one obtains relaxation and creep functions 
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These equations generate master curves from which the different temperature-dependent 
curves 10.7.4 can be obtained. 
 
Example Data 
 
For example, consider a viscosity which varies linearly over the range 

C100C100 oo    according to the relation  
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where 0  is a constant viscosity, 2.0A  and C20o

0   (a reference temperature at 

which   0  .  This function is plotted in Fig. 10.7.1 below. 

 

 
 

Figure 10.7.1: linear dependence of viscosity on temperature 
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Also, let mE /0 .  The resulting relaxation and creep functions of Eqn. 10.7.4 are 

plotted in Fig. 10.7.2 below (for 5m ). 
 

 
 

Figure 10.7.2: temperature-dependent functions; (a) relaxation modulus, (b) creep 
compliance 

 
Note the following, referring to Fig. 10.7.2: 
(i) for temperatures greater than the reference temperature o

0 20   (see Eqn. 

10.7.8), the viscosity is   0  .  This implies that, for 0  , the relaxation times 

are shorter than for 0   (see Eqn. 10.7.4a), Fig. 10.7.2a, and the slope of the creep 

curves is greater than for 0   (see Eqn. 10.7.4b)., Fig. 10.7.2b. 

(ii) for temperatures smaller than the reference temperature,   0  .  Thus, for 0  , 

the relaxation times are longer than for 0   and the slope of the creep curves is 

smaller than for 0  . 
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Now choose the constant A in Eqn. 10.7.5 to be equal to 0 .  This ensures that t  at 

the reference temperature 0  (see 10.7.8).  In other words, the master curves of Eqn. 

10.7.7 and the functions 10.7.4 corresponding to 0  coincide (with the t axis and   axis 

coincident). 
 
The master relaxation and creep curves of Eqn. 10.7.7 are now meEE //)(    and 

  mJE /1   .  These are plotted in Fig. 10.7.3 below (for 5m ). 
 

 
 

Figure 10.7.3: master curves; (a) relaxation modulus, (b) creep compliance 
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lie on the master curves (with the t axis and   axis coincident) 

(ii) for a curve with 0  , if the time axis of Fig. 10.7.2a,b is “stretched” (according to 
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curve); for a curve with 0  , if the time axis of Fig. 10.7.2a is “shrunk” (according 

to 10.7.5), the curve will come to lie along the 0   curve (and hence on the master 

curve) 
 
 
10.7.2 Thermorheologically Simple Materials 
 
The fact that the relaxation and creep curves of Fig. 10.7.2 collapsed onto the master 
curves of Fig. 10.7.3 relied on the change of variable, Eqn. 10.7.5, reducing the time and 
temperature dependent constitutive relation 10.7.3 to an equation in one variable,  , only, 
Eqn. 10.7.6.  This in turn depended critically on the form of the differential equation 
10.7.3.  For example, if the spring stiffness E  in the Maxwell model is temperature-
dependent, the collapsing of curves is not possible. 
 
Temperature-dependent viscoelastic materials for which this collapsing of curves is 
possible are called thermorheologically simple materials.  In this context, the parameter 
  is called the reduced time.  More generally, the transformation 10.7.5 is expressed in 
the form 

 

 
a

t
                                                         (10.7.9) 

 
and the function )(a  is called the shift factor function.  The shift factor is chosen so 

that the relaxation and creep curves corresponding to the chosen reference temperature 0  

coincide (as in the Maxwell model example above), i.e. so that 1)( 0 a . 

 
The relaxation and creep functions now transform as 
 

),(),(),,(),( 00  JtJEtE                       (10.7.10) 

 
For temperatures below the reference temperature, 0  , )( 0a  will be greater than 1, 

and the corresponding relaxation/creep curves collapse onto the master curve by 
“shrinking” the time axis t, which looks like a “shifting” of the curve “to the left” onto the 

0   curve.  On the other hand, for 0  , 1)( 0 a , and the corresponding curves 

collapse by a “stretching” of the time axis, which looks like a “shifting” of the curves “to 
the right” onto the master curve.  This is summarised in Fig. 10.7.4 below. 
 
The result of this is that materials at high temperatures and high strain rates behave 
similarly to materials at low temperatures and low strain rates. 
 
The method discussed can also be used when the temperature is time-dependent, for then 
the transformation can be expressed as 
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t
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d
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                                                    (10.7.11) 
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so that 
 

  tadt

d






1
                                                     (10.7.12) 

 
leading to the same reduced differential equation. 
 

 
 

Figure 10.7.4: Relaxation modulus, as a function of (a) time, (b) reduced time  
 
The above discussion has related to the differential constitutive equation 10.7.1.  The 
analysis can also be expressed in terms of hereditary integrals of the form 10.7.2.  For 
example, the equivalent hereditary integral in terms of reduced time, corresponding to the 
reduced differential equation (see Eqn. 10.7.6 for the Maxwell model equation) is 
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where  E  is as before (see Eqn. 10.7.7 for the Maxwell model expression). 
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