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10.7 Temperature-dependent Viscoelastic Materials 
 
Many materials, for example polymeric materials, have a response which is strongly 
temperature-dependent.  Temperature effects can be incorporated into the theory 
discussed thus far in a simple way by allowing for the coefficients of the differential 
constitutive equations to be functions of temperature.  Thus, Eqn. 10.3.19 can be 
expressed more generally as 
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where   denotes temperature.  Equivalently, one can allow for the creep and relaxation 
functions to be functions of temperature in the hereditary integral formulation.  Thus 
Eqns. 10.4.20-21 read 
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10.7.1 Example: The Maxwell Model 
 
Consider a Maxwell material whose dash-pot viscosity   is a function of temperature  .  
The differential constitutive equation is then 
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where E  is the temperature-independent spring stiffness.  This equation is a function of 
both temperature and time.  With temperature a function of time,  t  , it is a linear 
differential equation with non-constant coefficients.  For constant temperature, it has 
constant coefficients. 
 
Consider first the case of constant temperature.  The relaxation modulus and creep 
compliance functions can be evaluated by applying unit strain and unit stress.  From the 
previous work, one has 
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Thus any given material has temperature-dependent relaxation and creep functions. 
 
Consider now the change of variable 
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 
 t

A                                                         (10.7.5) 

 
where A is any constant (which can be chosen arbitrarily for convenience – see later).  
This transforms Eqn. 10.7.3 into 
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This is now an equation with dependence on only one variable,  .  From this equation, 
one obtains relaxation and creep functions 
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These equations generate master curves from which the different temperature-dependent 
curves 10.7.4 can be obtained. 
 
Example Data 
 
For example, consider a viscosity which varies linearly over the range 

C100C100 oo    according to the relation  
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where 0  is a constant viscosity, 2.0A  and C20o

0   (a reference temperature at 

which   0  .  This function is plotted in Fig. 10.7.1 below. 

 

 
 

Figure 10.7.1: linear dependence of viscosity on temperature 
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Also, let mE /0 .  The resulting relaxation and creep functions of Eqn. 10.7.4 are 

plotted in Fig. 10.7.2 below (for 5m ). 
 

 
 

Figure 10.7.2: temperature-dependent functions; (a) relaxation modulus, (b) creep 
compliance 

 
Note the following, referring to Fig. 10.7.2: 
(i) for temperatures greater than the reference temperature o

0 20   (see Eqn. 

10.7.8), the viscosity is   0  .  This implies that, for 0  , the relaxation times 

are shorter than for 0   (see Eqn. 10.7.4a), Fig. 10.7.2a, and the slope of the creep 

curves is greater than for 0   (see Eqn. 10.7.4b)., Fig. 10.7.2b. 

(ii) for temperatures smaller than the reference temperature,   0  .  Thus, for 0  , 

the relaxation times are longer than for 0   and the slope of the creep curves is 

smaller than for 0  . 
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Now choose the constant A in Eqn. 10.7.5 to be equal to 0 .  This ensures that t  at 

the reference temperature 0  (see 10.7.8).  In other words, the master curves of Eqn. 

10.7.7 and the functions 10.7.4 corresponding to 0  coincide (with the t axis and   axis 

coincident). 
 
The master relaxation and creep curves of Eqn. 10.7.7 are now meEE //)(    and 

  mJE /1   .  These are plotted in Fig. 10.7.3 below (for 5m ). 
 

 
 

Figure 10.7.3: master curves; (a) relaxation modulus, (b) creep compliance 
 
All the curves of Fig. 10.7.2 collapse onto the master curve of Fig. 10.7.3 as follows: 
(i) the curves corresponding to the reference temperature, o

0 20  , in Figs. 10.7.2 

lie on the master curves (with the t axis and   axis coincident) 

(ii) for a curve with 0  , if the time axis of Fig. 10.7.2a,b is “stretched” (according to 

10.7.5), the curve will come to lie along the 0   curve (and hence on the master 
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curve); for a curve with 0  , if the time axis of Fig. 10.7.2a is “shrunk” (according 

to 10.7.5), the curve will come to lie along the 0   curve (and hence on the master 

curve) 
 
 
10.7.2 Thermorheologically Simple Materials 
 
The fact that the relaxation and creep curves of Fig. 10.7.2 collapsed onto the master 
curves of Fig. 10.7.3 relied on the change of variable, Eqn. 10.7.5, reducing the time and 
temperature dependent constitutive relation 10.7.3 to an equation in one variable,  , only, 
Eqn. 10.7.6.  This in turn depended critically on the form of the differential equation 
10.7.3.  For example, if the spring stiffness E  in the Maxwell model is temperature-
dependent, the collapsing of curves is not possible. 
 
Temperature-dependent viscoelastic materials for which this collapsing of curves is 
possible are called thermorheologically simple materials.  In this context, the parameter 
  is called the reduced time.  More generally, the transformation 10.7.5 is expressed in 
the form 
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and the function )(a  is called the shift factor function.  The shift factor is chosen so 

that the relaxation and creep curves corresponding to the chosen reference temperature 0  

coincide (as in the Maxwell model example above), i.e. so that 1)( 0 a . 

 
The relaxation and creep functions now transform as 
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For temperatures below the reference temperature, 0  , )( 0a  will be greater than 1, 

and the corresponding relaxation/creep curves collapse onto the master curve by 
“shrinking” the time axis t, which looks like a “shifting” of the curve “to the left” onto the 

0   curve.  On the other hand, for 0  , 1)( 0 a , and the corresponding curves 

collapse by a “stretching” of the time axis, which looks like a “shifting” of the curves “to 
the right” onto the master curve.  This is summarised in Fig. 10.7.4 below. 
 
The result of this is that materials at high temperatures and high strain rates behave 
similarly to materials at low temperatures and low strain rates. 
 
The method discussed can also be used when the temperature is time-dependent, for then 
the transformation can be expressed as 
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so that 
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leading to the same reduced differential equation. 
 

 
 

Figure 10.7.4: Relaxation modulus, as a function of (a) time, (b) reduced time  
 
The above discussion has related to the differential constitutive equation 10.7.1.  The 
analysis can also be expressed in terms of hereditary integrals of the form 10.7.2.  For 
example, the equivalent hereditary integral in terms of reduced time, corresponding to the 
reduced differential equation (see Eqn. 10.7.6 for the Maxwell model equation) is 
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where  E  is as before (see Eqn. 10.7.7 for the Maxwell model expression). 
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