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10.6 Oscillatory Stress, Dynamic Loading and 
Vibrations 

 
Creep and relaxation experiments do not provide complete information concerning the 
mechanical behaviour of viscoelastic materials.  These experiments usually provide test 
data in the time-range from 10 seconds to 10 years.  It is often of interest to know the 
response of materials to loads of very short duration.  For example, duration of the impact 
of a steel ball on a viscoelastic block may be of the order of sec 10 5 1.  In order to be able 
to determine the response for such conditions, it is necessary to know the behaviour of a 
material at high rates of loading (or short duration loading). 
 
The techniques and apparatus for investigating the response of a material to very short 
term loading are different to those involved in longer-term testing.  For very  short time 
loading it is more convenient to use oscillatory than static loading, and in order to predict 
the behaviour of a viscoelastic material subjected to an oscillatory load, one needs to 
formulate the theory based on oscillatory stresses and strains. 
  
 
10.6.1 Oscillatory Stress 
 
Consider a dynamic load of the form 

 
)cos()( tt o                                                 (10.6.1) 

 
where o  is the stress amplitude and   is the angular frequency2.  Assume that the 

resulting strain is of the form3 
 

)cos()(   tt o                                           (10.6.2) 

 
so that the strain is an oscillation at the same frequency as the stress but lags behind by a 
phase angle  , Fig. 10.6.1.  This angle is referred to as the loss angle of the material, for 
reasons which will become clear later. 
 
Expanding the strain trigonometric terms, 
 

ttt oo  sinsincoscos)(                              (10.6.3) 

 
The first term here is completely in phase with the input; the second term is completely 
out of phase with the input.  If the phase angle   is zero, then the stress and strain are in 

                                                 
1 dynamic experiments usually provide data from about sec. 10 8  to about sec. 103  so there is a somewhat 
overlapping region where data can be obtained from both types of experiment 
2 when an oscillatory force is first applied, transient vibrations result at the natural frequency of the material 
–  these soon die out leaving the vibrations at the source frequency 
3 if one substitutes 10.6.1 into the general constitutive equation 10.3.17, one sees that the strain and its 
derivatives contain sine and cosine terms, so that the strain must be of the general form 

)sin()cos( tBtA   , where A and B are constants.  For convenience, this can be written as )cos( DtC   

where C and D are new constants 
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phase (as happens with an ideal elastic material), whereas if 2/  , the stress and strain 
are completely out of phase. 
 

 
 

Figure 10.6.1: Oscillatory stress and strain 
 
 
The Complex Compliance 
 
Define 
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so that 

 
 tJtJt o  sincos)( 21                                 (10.6.5) 

 
The quantities 1J  and 2J  are a measure of how in, or out of, phase the stress is with the 

strain. The former, 1J , is called the storage compliance and the latter, 2J , is called the 
loss compliance.  They are usually written as the components of a complex compliance, 

*J : 

21
* iJJJ                                                  (10.6.6) 

 
If one has a stress input in the form of a sine function, then 
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and again the storage compliance is a measure of the amount "in phase" and the loss 
compliance is a measure of the amount "out of phase". 
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The Complex Modulus 
 
One can also regard of the strain as the input and the stress as the output.  In that case one 
can write (  is again the phase angle by which the strain lags behind the stress) 
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This is in effect the same stress-strain relationship as that used above, only the 
stress/strain are shifted along the t-axis. 
 
Define next the two new quantities 
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so that 

 
 tEtEt o  sincos)( 21                               (10.6.10) 

 
Again, these quantities are a measure of how much the response is in phase with the input.  
The former, 1E , is called the storage modulus and the latter, 2E , is called the loss 
modulus.  As with the compliances, they are usually written as the components of a 
complex modulus4, *E : 

 

21
* iEEE                                                (10.6.11) 

 
Again, if one has a sinusoidal strain as input, one can write 
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It is apparent from the above that  

 
1** EJ                                                    (10.6.13) 

 
which is a much simpler relationship than that between the creep compliance function and 
the relaxation modulus (which involved Laplace transforms, Eqn. 10.5.28). 
 
 
                                                 
4 typical values for the storage and loss moduli for a polymer would be around 1 10 MPaE  , 

2 0.1 MPaE  .  The ratio of the amplitudes is called the dynamic modulus, ooE  /*  .    
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Complex Formulation 
 
The above equations can be succinctly written using a complex formulation, using Euler's 
formula 
 

 sincos ie i                                               (10.6.14) 
 
For a stress input, 
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The creep compliance function )(tJ  is the strain response to a unit load.  In the same way, 

from 10.6.15,  the complex compliance *J  can be interpreted as the strain amplitude 
response to a sinusoidal stress input of unit magnitude. 
 
Similarly, for a strain input, one has 
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and the term in brackets is, by definition, the complex modulus *E . 
 
The relationship between the complex compliance/modulus and the 
differential constitutive equation 
 
Putting ti

oet  )(  and the resulting strain  ti
oet  )(  into the general differential 

operator form of the constitutive equation 10.3.19, one has 
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This equation thus gives the relationship between the complex compliance and the 
constants ii qp , .  A similar relationship can be found for the complex modulus: 
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Again one sees that 1** EJ . 
 
From 10.6.17-18, the complex compliance and complex modulus are functions of the 
frequency  , and thus, from the definitions 10.6.4, 10.6.6, 10.6.9, 10.6.11, so is the phase 
angle  .  Thus   is the primary variable influencing the viscoelastic properties (whereas 
time t was used for this purpose in the analysis of static loading). 
 
The relationship between the complex compliance/modulus and the creep 
compliance/ relaxation modulus 
 
It can be shown5 that the complex compliance )(* J  and the complex modulus )(* E  
are related to the creep compliance )(tJ  and relaxation modulus )(tE  through 
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Here, the Laplace transform is first taken and then evaluated at is   6. 
 
A Note on Frequency 
 
Frequencies below 0.1 Hz are associated with seismic waves.  Vibrations of structures and 
solid objects occur from about 0.1 Hz to 10 kHz depending on the size of the structure.  
Stress waves from 20 Hz to 20 kHz are perceived as sound - above 20 kHz is the 
ultrasonic range.  Frequencies above 1012 Hz correspond to molecular vibration and 
represent an upper limit for stress waves in real solids. 
 
 
10.6.2 Example: The Maxwell Model 
 
The constitutive equation for the Maxwell model is given by Eqn. 10.3.6, 
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Consider an oscillatory stress )cos( to   .  We thus have7  
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5 using Fourier transform theory for example 
6 1J  and 2J  are also related to each other (as are 1E  and 2E ) by an even more complicated rule known as 

the Kramers-Kronig relation 
7 the constant of integration is zero (assuming that the initial strain is that in the spring, Eo / ). 
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Thus the complex compliance is 
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This result can be obtained more easily using the relationship between the complex 
compliance and the constitutive equation: the constitutive equation can be rewritten as  
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From Eqn. 10.6.17, 
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Also, the complex modulus is related to the complex compliance through 10.6.13, 

** /1 JE  , so that 
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For very low frequencies, 0 , tt  /)sin( , and the response, as expected, reduces 

to that for a static load,   //1)( tEt o  . 

 
For very high frequencies, 0/1  , and the response is   )cos(/)( tEt o   .  Thus the 

strain is completely in-phase with the load, but the dash-pot is not moving – it has no time 
to respond at such high frequencies - the spring/dash-pot model is reacting like an isolated 
spring, that is, like a solid, with no fluid behaviour. 
 
 
10.6.3 Energy Dissipation 
 
Because the equations 10.6.12  
 

)sin()(),sin()(   tttt oo                       (10.6.26) 

 
are the parametric equations for an ellipse, that is, they trace out an ellipse for values of t,  
the stress-strain curve for an oscillatory stress is an elliptic hysteresis loop, Fig. 10.6.2. 
 
The work done in stressing a material (per unit volume) is given by 
 

 dW                                                (10.6.27) 

 
The energy lost W  through internal friction and heat is given by the area of the ellipse.  
Thus 
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where 1t  is some starting time and T is the period of oscillation,  /2T .  Substituting 
in Eqns. 10.6.26 for strain and stress then gives 
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Figure10.6.2: Elliptic Stress-Strain Hysteresis Loop 
 
Taking 01 t  then gives8 
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When 0 , the energy dissipated is zero, as in an elastic material.  It can also be seen 
that 
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and hence the names loss modulus and loss compliance. 
 
 
 
 
                                                 
8 the same result is obtained for )sin(),sin(   tt oo  or when the stress and strain are cosine 

functions 
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Damping Energy 
 
The energy stored after one complete cycle is zero since the material has returned to its 
original configuration.  The maximum energy stored during any one cycle can be 
computed by integrating the increment of work d  from zero up to a maximum stress, 
that is over one quarter the period T  of one cycle.  Thus, integrating from  /1 t   

(where 0 ) to  2/12  tt , Fig. 10.6.39 
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The second term is 4/sin oo , which is one quarter of the energy dissipated per 

cycle, and so can be considered to represent the dissipated energy.  The remaining, first, 
term represents the area of the shaded triangle in Fig. 10.6.3 and can be considered to be 
the energy stored, 2/cos oosW   (it reduces to the elastic solution 2/ooW   

when 0 ). 
 
The damping energy of a viscoelastic material is defined as SWW / , where SW  is the 

maximum energy the system can store in a given stress/strain amplitude.  Thus (dividing 
W  by 4 so it is consistent with the integration over a quarter-cycle to obtain the stored 

energy) 
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Thus the damping ability of a linearly viscoelastic material is only dependent on the 
phase/loss angle  . 
 

 
 

Figure10.6.3: Elliptic Stress-Strain Hysteresis Loop 
 

                                                 
9 or one could integrate from zero to maximum strain, over   2/,0 , giving the same result 
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The quantity tan  is known as the mechanical loss, or the loss tangent.  It can be 
considered to be the fundamental measure of damping in a linear material (other 
measures, for example  tan2, , etc., are often used)10.  Typical values for a range of 
materials at various temperatures and frequencies are shown in Table 10.6.1. 
 

Material Temperature Frequency ( v ) Loss Tangent ( tan ) 
Sapphire 4.2 K 30 kHz 10105.2   
Sapphire rt 30 kHz 9105   
Silicon rt 20 kHz 8103   
Quartz rt 1 MHz 710  

Aluminium rt 20 kHz 510  
Cu-31%Zn rt 6 kHz 5109   

Steel rt 1 Hz 0005.0  
Aluminium rt 1 Hz 001.0  
Fe-0.6%V 33oC 0.95 Hz 0016.0  

Basalt rt 0.001-0.5 Hz 0017.0  
Granite rt 0.001-0.5 Hz 0031.0  
Glass rt 1 Hz 0043.0  
Wood rt  1 Hz 02.0  
Bone 37oC 1-100 Hz 01.0  
Lead rt 1-15 Hz 029.0  

PMMA rt 1 Hz 1.0  
Table 10.6.1: Loss Tangents of Common Materials11 

 
 
10.6.4 Impact 
 
Consider the impact of a viscoelastic ball dropped from a height dh  onto a rigid floor.  

During the impact, a proportion of the initial potential energy dmgh , which is now kinetic 

energy 2
2
1 mv , where v is the velocity at impact, is lost and only some is stored.  The 

stored energy is converted back to kinetic energy which drives the ball up on the rebound, 
reaching a height dr hh  , with final potential energy rmgh .  The ratio of the two heights 

is12 
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where sW  is the energy stored and dW  is the energy dissipated during the impact. 

 

                                                 
10 some investigators recommend that one uses the maximum storable energy when 0 , in which case 

the stored energy is 2/oo  and the damping measure would be 2/sin/  SWW  
11 from Table 7.1 of Viscoelastic Solids, by R. S. Lakes, CRC Press, 1999 
12 the coefficient of restitution e is defined as the ratio of the velocities before and after impact, dr vve / ,  

so 2f e . 
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The impact event can be approximated by a half-cycle of the oscillatory stress-strain 
curve, Fig. 10.6.4.  Integrating over   /,0  or   /)(,/  , one has13  
 

  sincos
2

1
 ooW                                       (10.6.35)  

 
and so the “height lost” is given by 
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Figure10.6.4: Impact approximated as a half-cycle of oscillatory stress and strain 
 
Note some other approximations made:  
(i) energy losses due to air resistance, friction and radiation of sound energy during 

impact have been neglected 
(ii) in a real impact, the stress and strain are both initially zero.  In the current analysis, 

when one of these quantities is zero, the other is finite, and this will inevitably 
introduce some error14.  

 
 
10.6.5 Damping of Vibrations  
 
The inertial force in many applications can be neglected.  However, when dealing with 
vibrations, the product of acceleration times mass can be appreciable when compared to 
the other forces present. 
 
Vibrational damping can be examined by looking at a simple oscillator with one degree of 
freedom, Fig. 10.6.5.  A mass m  is connected to a wall by a viscoelastic bar of length L  
and cross sectional area A .  The motion of the system is described by the equations 

                                                 
13 although it might be more accurate to integrate over   /)(,0   
14 as mentioned, there is a transient term involved in the oscillation which has been ignored, and which dies 
out over time, leaving the strain to lag behind the stress at a constant phase angle 
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Dynamic equation: 0 Fxm   
Kinematic relation: Lx /  
Constitutive relation: (depends on model) 
 

Assuming an oscillatory motion, ti
oexx  , and using the first two of these, 
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The quantity in brackets is the complex modulus *E  (see Eqn. 10.6.16). 
 
As an example, for the Maxwell model (see Eqn. 10.6.24) 
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and so 
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which can be solved to get 
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Figure10.6.5: Vibration 
 
If m  is small or E  is large (and /E  is not too large) the root has a real part, v  say, so 
that 

 
vEi  )2/(                                                    (10.6.41) 

 
and one has the damped vibration 
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If, on the other hand, the mass is large or the spring compliant, one gets a pure imaginary 
root, ivEi  )2/(  , so that i  is real (and less than zero) and one has the aperiodic 
damping 

 
 tvEtvE

o ececxx )2/(
2

)2/(
1

                                     (10.6.43) 

 
 
10.6.6 Problems  
 
1. Use the differential form of the constitutive equation for a linearly viscoelastic 

material to derive the complex compliance, the complex modulus, and the loss 
tangent for a Kelvin material. (put the first two in the form  i ).  Use your 
expression for the complex compliance to derive the strain response to a stress 

)cos( to  , in terms of   ,,,, Eto , in the form 

 tBtAt o  sincos)(   

What happens at very low frequencies?  


