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10.5 Linear Viscoelasticity and the Laplace Transform 
 
The Laplace transform is very useful in constructing and analysing linear viscoelastic 
models. 
 
 
10.5.1 The Laplace Transform 
 
The formula for the Laplace transform of the derivative of a function is1: 
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where s is the transform variable, the overbar denotes the Laplace transform of the 
function, and )0(f  is the value of the function at time 0t .  The Laplace transform is 

defined in such a way that )0(f  refers to  0t , that is, just before time zero.  Some 
other important Laplace transforms are summarised in Table 10.5.1, in which   is a 
constant. 
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Table 10.5.1: Laplace Transforms 
 
Another useful formula is the time-shifting formula: 
 

  )()()( sfetHtfL s                                 (10.5.2) 
 
 
10.5.2 Mechanical models revisited 
 
The Maxwell Model 
 
The Maxwell model is governed by the set of three equations 10.3.5: 

 
1 this rule actually only works for functions whose derivatives are continuous, although the derivative of the 
function being transformed may be piecewise continuous.  Discontinuities in the function or its derivatives 
introduce additional terms 
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Taking Laplace transforms gives 
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and it has been assumed that the strain 2  is zero at  0t .  The three differential 
equations have been reduced to a set of three algebraic equations, which may now be 
solved to get 
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Transforming back then gives Eqn. 10.3.6: 
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Now examine the response to a sudden load.  When using the Laplace transform, the load 
is written as )()( tHt o  , where )(tH  is the Heaviside step function (see the 

Appendix to the previous section).  Then 10.5.6 reads 
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Using the Laplace transform gives 
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which is the same result as before, Eqn. 10.3.7-8.  Subsequent unloading, at time t  
say, can be dealt with most conveniently by superimposing another load 

)()(   tHt o  onto the first.  Putting this into the constitutive equation and using 

the Laplace transform gives 
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Transforming back, again using the time-shifting rule, gives 
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Adding this to the strain due to the first load then gives the expected result 
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The Kelvin Model 
 
Taking Laplace transforms of the three equations for the Kelvin model, Eqns. 10.3.10, 
gives  sE  , which yields 10.3.11,   E .  The response to a load 

)()( tHt o   is 
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The response to another load of magnitude )()(   tHt o  is 
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The response to both loads now gives the complete creep and recovery response: 
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To analyse the response to a suddenly applied strain, substitute )()( tHt o   into the 

constitutive equation    E  to get )()( 00 ttHE   , which shows that the 

relaxation modulus of the Kelvin model is 
 

)()( tEtE                                          (10.5.15) 
 
The Standard Linear Model  
 
Consider next the standard linear model, which consists of a spring in series with a Kelvin 
unit, Fig. 10.5.1 (see Fig. 10.3.8a).  Upon loading one expects the left-hand spring to 
stretch immediately.  The dash pot then takes up the stress, transferring the load to the 
second spring as it slowly opens over time.  Upon unloading one expects the left-hand 
spring to contract immediately and for the right-hand spring to slowly contract, being held 
back by the dash-pot. 
 
The equations for this model are, from the figure,  
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Figure 10.5.1: the standard linear model 
 
One can eliminate the four unknowns from these five equations using the Laplace 
transform, giving 
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which transforms back to (in standard form) 
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which is Eqn. 10.3.16a. 
 
The response to a load )()( tHt o   is  

 
 

  
 

  
)()(

/

1

/

1

)()(

21

21

21

12121

tJt

sEsE

EE

sEE

EEEttHEE

o

oo

oo





















 

         (10.5.19) 

 
and the creep compliance is 
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Note that 1/)0( Eo   as expected. 

 
For recovery one can superimpose an opposite load onto the first, at time   say: 
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The response after time   is then 
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This is, as expected, simply the recovery response of the Kelvin unit.  The full response is 
as shown in Fig. 10.5.2.  This seems to be fairly close now to the response of a real 
material as discussed in §10.1, although it does not allow for a permanent strain. 
 

 
 

Figure 10.5.2: Creep-recovery response of the standard linear model 
 
Non-constant Loading 
 
The response to a complex loading history can be evaluated by solving the differential 
constitutive equation (or the corresponding hereditary integral).  The differential equation 
can be most easily solved using Laplace transforms.  
 
 
Example 
 
Consider the example treated earlier using hereditary integrals, at the end of §10.4.2.  
Load (1) of Fig. 10.4.5 can be thought of as consisting of the two loads (1a) tT )/ˆ(   
and (1b) )())(/ˆ( TtHTtT    applied at time Tt  .  Load (2) consists of a 
constant load applied at time Tt  . 
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For load (1a), 
 

2
23 2

11
ˆ

)(1ˆ11ˆˆˆ
t

T
t

ET

t

sTEsTTE
t

T 





   

 
which gives the response for Tt  . 
 
For load (1b) one has [note:      0  ttL ] 
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The response after time T is then given by adding the two results: 
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10.5.3  Relationship between Creep and Relaxation 
 
Taking the Laplace transform of the general constitutive equation 10.3.19,  QP  , 
leads to 
 

      4
4

3
3

2
21

4
4

3
3

2
21 sqsqsqsqqspspspspp oo  

(10.5.23) 
 
which can also be written in the contracted form 
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where P  and Q are the polynomials 
 

i
n

i
i

i
n

i
i sqsQspsP 




00

)(,)(                                    (10.5.25) 

 
The Laplace transforms of the creep compliance  )()( sJtJ   and relaxation modulus 

 )()( sEtE   can be written in terms of these polynomials as follows.  First, the strain 
due to a unit load )(tH  is )(tJ .  Since s/1 , substitution into the above equation 
gives 
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Similarly, the stress due to a unit strain )(tH  is )(tE  and so 
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It follows that 
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Thus, for a linear viscoelastic material, there is a unique and simple relationship between 
the creep and relaxation behaviour. 
 
 
10.5.4 Problems 
 
 
1. Check that the relation 10.5.28, 2/1)()( ssEsJ  , holds for the Kelvin model 
 
2. (a)  Derive the constitutive relation (in standard form) for the three-element model 

shown below using the Laplace transform (this is the Standard Fluid II of Fig. 
10.3.8d and the constitutive relation is given by Eqn. 10.3.16d) 

(b) Derive the creep compliance )(tJ  by considering a suddenly applied load. 
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