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10.4 The Hereditary Integral 
 
In the previous section, it was shown that the constitutive relation for a linear viscoelastic 
material can be expressed in the form of a linear differential equation, Eqn. 10.3.19.  Here 
it is shown that the stress-strain relation can also be expressed in the form of an integral, 
called the hereditary integral.  Quite a few different forms of this integral are commonly 
used; to begin this section, the different forms are first derived for the Maxwell model, 
before looking at the more general case(s). 
 
 
10.4.1 An Example: the Maxwell Model 
 
Consider the differential equation for the Maxwell model, Eqn. 10.3.6, 
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d
E

E
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d 



                                                 (10.4.1) 

 
The first order differential equation can be solved using the standard integrating factor 
method.  This converts 10.4.1 into an integral equation.  Three similar integral equations 
will be derived in what follows1. 
 
Hereditary Integral over  t,  
 
It is sometimes convenient to regard 10.4.1 as a differential equation over the time 
interval  t, , even though the time interval of interest is really  t,0 .  This can make it 
easier to deal with sudden “jumps” in stress or strain at time 0t .  The initial condition 
on 10.4.1 is then 
 

  0 .                                                     (10.4.2)   
 
Using the integrating factor /Ete , re-write 10.4.1 in the form 
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Integrating both sides over  t̂,  gives 
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or 
 

                                                 
1 note that Eqn. 10.4.1 predicts that sudden changes in the strain-rate,  , will lead to sudden changes in the 
stress-rate,  , but the stress   will remain continuous.  The strain   does not appear explicitly in 10.4.1; 
sudden changes in strain can be dealt with by (i) integrating across the point where the jump occurs, or (ii) 
using step functions and the integral formulation (see later) 
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Changing the notation,  
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where )(tE , the relaxation modulus for the Maxwell model, is 
 

/)( EtEetE                                                      (10.4.7) 
 
This is known as a hereditary integral; given the strain history over  t, , one can 
evaluate the stress at the current time.  It is the same constitutive equation as Eqn. 10.4.1, 
only in a different form. 
 
Hereditary Integral over  t0,  
 
The hereditary integral can also be expressed in terms of an integral over  t,0 .  Let there 
be a sudden non-zero strain )0(  at 0t , with the strain possibly varying, but  
continuously, thereafter.  The strain, which in Eqn. 10.4.6 is to be regarded as a single 
function over  t,  with a jump at 0t , is sketched in Fig. 10.4.1. 
 
 

 
 

Figure 10.4.1: Strain with a sudden jump to a non-zero strain at 0t  
 
There are two ways to proceed.  First, write the integral over three separate intervals: 
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With 0)( t  over   , , the first integral is zero.  With a jump in strain only at 

0t , the integrand in the third integral remains finite.  The second integral can be 
evaluated by considering the function )(tf  illustrated in Fig. 10.4.2, a straight line with 
slope  2/)0( .  As 0 , it approaches the actual strain function )(t , which jumps to 

)0(  at 0t .  Then 
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Figure 10.4.2: A function used to approximate the strain for a sudden jump 
 
Using the approximation xex  1  for small x, the value of this integral is  /)0( EtEe .  
Thus Eqn. 10.4.6 can be expressed as 
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By “0” here in the lower limit of the integral, one means 0 , just after any possible non-
zero initial strain.  In that sense, the strain  t  in Eqn. 10.4.10 is to be regarded as a 

continuous function, i.e. with no jumps over  t,0 .  Jumps in strain after 0t  can be 
dealt with in a similar manner. 
 
A second and more elegant way to arrive at Eqn. 10.4.10 is to re-express the above 
analysis in terms of the Heaviside step function )(tH  and the Dirac delta function )(t  
(see the Appendix to this section for a discussion of these functions). 
 
The function sketched in Fig. 10.4.1 can be expressed as )()( ttH   where now )(t  is to 

be regarded as a continuous function over  , t  – the jump is now contained within the 

step function )(tH .  Eqn. 10.4.6 now becomes 
 

        




 d

d

dH
tEd

d

d
HtEt

tt




 )(
)(

)(             (10.4.11) 

 
The first integral becomes the integral in 10.4.10.  From the brief discussion in the 
Appendix to this section, the second integral becomes  
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A Third Hereditary Integral 
 
Finally, the integral can also be expressed as a function of )(t , rather than its derivative.  
To achieve this, one can integrate 10.4.10 by parts: 
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This can be expressed as 
 

  
t

dtRtEt
0

)()()0()(                                  (10.4.14) 

 
where dttdEtR /)()(  . 
 
Note that integration by parts is only possible when there are no “jumps” in the functions 
under the integral sign and this is assumed for the integrand in 10.4.10.  If there are 
jumps, the integral can either be split into separate integrals as in 10.4.8, or the functions 
can be represented in terms of step functions, which automatically account for jumps. 
 
The formulae 10.4.6, 10.4.10 and 10.4.14 give the stress as functions of the strain.  
Similar formulae can be derived for the strain in terms of the stress (see the Appendix to 
this Section). 
 
Relaxation Test 
 
To illustrate the use of the hereditary integral formulae, consider a relaxation test, where 
the strain history is given by 
 



 


otherwise,
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Expressing the strain history as )()( 0 tHt   , Eqn. 10.4.6 gives 
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From 10.4.10, with the derivative in the integrand zero, one has )()0()()( 0 tEtEt   .  

Finally, from 10.4.14, with    /2 /)( EteEtR  , one again has  
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10.4.2 Hereditary Integrals: General Formulation 
 
Although derived for the Maxwell mode, these formulae Eqns. 10.4.6, 10.4.10, 10.4.14, 
are in fact quite general, for example they can be derived from the differential equation 
for the Kelvin model (see Appendix to this section). 
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The hereditary integrals were derived directly from the Maxwell model differential 
equation so as to emphasis that they are one and the same constitutive equation.  Here 
they are derived more generally from first principles. 
 
The strain due to a constant step load )0(  applied at time 0t  is by definition 

)()0()( tJt   , where )(tJ  is the creep compliance function.  The strain due to a second 
load,   say, applied at some later time  , is )()(   tJt .  The total strain due to 
both loads is2, Fig. 10.4.3, 

 
)()()0()(   tJtJt                                         (10.4.18) 

 
 

 
 

Figure 10.4.3: Superposition of loads 
 
Generalising to an indefinite number of applied loads of infinitesimal magnitude, id , 

one has 
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ii tJdtJt                                     (10.4.19) 

 

In the limit, the summation becomes the integral  dtJ  )( , or3 (see Fig. 10.4.4) 
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2 this is again an application of the linear superposition principle, mentioned in  §6.1.2; because the material 
is linear (and only because it is linear), the "effect" of a sum of "causes" is equal to the sum of the 
individual "effects" of each "cause" 
3 this integral equation allows for a sudden non-zero stress at 0t .  Other jumps in stress at later times can 
be allowed for in a similar manner – one would split the integral into separate integrals at the point where 
the jump occurs 
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Figure 10.4.4: Formation of the hereditary integral 
 
One can also derive a corresponding hereditary integral in terms of the relaxation 
modulus {▲Problem 1}: 
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     Hereditary Integral (for Stress)   (10.4.21) 

 
This is Eqn. 10.4.10, which was derived specifically from the Maxwell model. 
 
The hereditary integrals only require a knowledge of the creep function (or relaxation 
function).  One does not need to construct a rheological model (with springs/dashpots) to 
determine a creep function.  For example, the creep function for a material may be 
determined from test-data from a creep test.  The hereditary integral formulation is thus  
not restricted to particular combinations of springs and dash-pots. 
 
Example 
 
Consider the Maxwell model and the two load histories shown in Fig. 10.4.5.  The 
maximum stress is the same in both, ̂ , but load (1) is applied more gradually.  
 

 
 

Figure 10.4.5: two stress histories 
 
Examine load (1) first.  The stress history is 
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In the hereditary integral 10.4.20, the creep compliance function )(tJ  is given by 10.3.8, 

EttJ /1/)(   , and the stress is zero at time zero, so 0)0(  .  The strain is then 
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For load history (2),  
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The strain is then 0)( t  for Tt  .  The hereditary integral 10.4.20 allows for a jump at 

0t .  For a jump from zero stress to a non-zero stress at Tt   it can be modified to 
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which is less than the strain due to load (1). (Alternatively, one could use the Heaviside 
step function and let )(ˆ)( TtHt    in 10.4.20, leading to the same result,  

  )(ˆ)(ˆ)()0()(
0

TtJdTtJtJt
t

   .) 

 
This example illustrates two points: 
(1) the material has a "memory".  It remembers the previous loading history, responding 

differently to different loading histories 
(2) the rate of loading is important in viscoelastic materials.  This result agrees with an 

observed phenomenon: the strain in viscoelastic materials is larger for stresses which 
grow gradually to their final value, rather than when applied more quickly4. 

                                                 
4 for the Maxwell model, if one applied the second load at time 2/Tt  , so that the total stress applied in 
(1) and (2) was the same, one would have obtained the same response after time T, but this is not the case in 
general 
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10.4.3 Non-linear Hereditary Integrals 
 
The linear viscoelastic models can be extended into the non-linear range in a number of 
ways.  For example, generalising expressions of the form 10.4.14,  
 

      
t

dtftRtft
0

21 )()(                                     (10.4.22) 

 
where 21 , ff  are non-linear functions of the strain history.  The relaxation function can 
also be assumed to be a function of strain as well as time: 
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10.4.4 Problems 
 
1. Derive the hereditary integral 10.4.21, 

 
 
t

d
d

d
tEtEt

0

)()()0()( 

  

 
2. Use the hereditary integral form of the constitutive equation for a linear viscoelastic 

material, Eqn. 10.4.20, to evaluate the response of a material with creep compliance 
function 

)1ln()(  ttJ  

to a load )1()( Btt o   .  Sketch )(tJ , which of course gives the strain response 

due to a unit load 1)( t .  Sketch also the load )(t and the calculated strain )(t .  

[note:   tbbtbtbdxxb
t

 )1ln()1()1ln()1(1)(ln
0

] 

 
3. A creep test was carried out on a certain linear viscoelastic material and the data was 

fitted approximately by the function 
 tet 21ˆ)(   , 

where ̂  was the constant applied load. 
(i) Sketch this strain response over 30  t  (very roughly, with 1ˆ  ). 
(ii) Which of the following three rheological models could be used to model the 

material: 
(a) the full generalized Kelvin chain of Fig. 10.3.9 
(b) the Kelvin chain minus the free spring 
(c) the generalized Maxwell model minus the free spring and free dash-pot 

Give reasons for your choice (and reasons for discounting the other two). 
(iii) For the rheological model you chose in part (ii), roughly sketch the response to a 

standard creep-recovery test (the response during the loading phase has already 
been done in part (i)). 

(iv) Find the material’s response to a load 1)( 2  tt . 
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4. Determine the strain response of the Kelvin model to a stress history which is 

triangular in time: 
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10.4.5 Appendix to §10.4 
 
 
1. The Heaviside Step Function and the Dirac Delta Functions 
 
The Heaviside step function )(tH  is defined through 
 


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and is illustrated in Fig. 10.4.6a.  The derivative of the Heaviside step function, dtdH / , 
can be evaluated by considering )( atH   to be the limit of the function )(tf  shown in 
Fig. 10.4.6b as 0 .  This derivative dtdf /  is shown in Fig. 10.4.6c and in the limit is  
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where   is the Dirac delta function defined through (the integral here states that the 
“area” is unity, as illustrated in Fig. 10.4.6c) 
 



 


otherwise0

,
)(

at
at ,         1





dtat                              (10.4.26) 

 
Integrals involving delta functions are evaluated as follows: consider the integral 
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The delta function here is zero, and hence the integrand is zero, everywhere except at 

bt  .  Thus the integral is 
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Figure 10.4.6: The Heaviside Step Function and evaluation of its derivative 
 
 
2. The Maxwell Model: Functions of the Stress 
 
In §10.4.1, the hereditary integrals for the Maxwell model were derived for the stress in 
terms of integrals of the strain.  Here, they are derived for the strain in terms of integrals 
of the stress. 
 
Consider again the differential equation for the Maxwell model, Eqn. 7.3.6, 
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Direct integration gives 
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Integrating by parts leads to 
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Bringing the first term inside the integral, 
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or 
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where the creep function is //1)( tEtJ  . 
 
If there is a jump in stress at 0t , 10.4.33 can be expressed as an integral over  t,0  by 
evaluating the contribution of the jump to the integral in 10.4.33: 
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(10.4.34) 
 
leading to 
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Alternatively, one could also have simply let )()()( ttHt    in 10.4.33, again leading 

to the term           0 tJdtJ
t

 
. 

 
Finally, integrating by parts, one also has 
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where dttdJtS /)()(  . 
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3. The Kelvin Model: Functions of the Stress 
 
Consider the differential equation for the Kelvin model, Eqn. 10.3.11, 
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Using the integrating factor /Ete , one has 
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Integrating both sides over  t̂,  gives 
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or 
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Changing the notation,  
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An integration by parts leads to 
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Finally, taking the free term inside the integral: 
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where   EetJ Et /1)( /  is the creep compliance function for the Kelvin model. 
 
The other versions of the hereditary integral,. Eqn. 10.4.10, 10.4.14 can be derived from 
this as before. 
 
 
  


