
 229

8 Energy and Virtual Work 
 
 
Thus far in this book, problems have been solved by using a combination of force-
equilibrium and kinematics.  Here, another approach is explored, in which expressions for 
work and energy are derived and utilised. 
 
Two important topics are discussed in this Chapter.  The first is Energy Methods, which 
are techniques for solving problems involving elastic materials.  Some of these methods, 
for example Castigliano’s second theorem, apply only to linear elastic materials, but most 
apply to generally non-linear elastic materials. 
 
The second topic is that of Virtual Work.  The virtual work approach leads to powerful 
methods which can be used to solve static or dynamic problems involving any material 
model. 
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8.1 Energy in Deforming Materials 
 
There are many different types of energy: mechanical, chemical, nuclear, electrical, 
magnetic, etc.  Energies can be grouped into kinetic energies (which are due to 
movement) and potential energies (which are stored energies – energy that a piece of 
matter has because of its position or because of the arrangement of its parts). 
 
A rubber ball held at some height above the ground has (gravitational) potential energy.  
When dropped, this energy is progressively converted into kinetic energy as the ball’s 
speed increases until it reaches the ground where all its energy is kinetic.  When the ball 
hits the ground it begins to deform elastically and, in so doing, the kinetic energy is 
progressively converted into elastic strain energy, which is stored inside the ball.  This 
elastic energy is due to the re-arrangement of molecules in the ball – one can imagine this 
to be very like numerous springs being compressed inside the ball.  The ball reaches 
maximum deformation when the kinetic energy has been completely converted into strain 
energy.  The strain energy is then converted back into kinetic energy, “pushing” the ball 
back up for the rebound. 
 
Elastic strain energy is a potential energy – elastically deforming a material is in many 
ways similar to raising a weight off the ground; in both cases the potential energy is 
increased. 
 
Similarly, work is done in stretching a rubber band.  This work is converted into elastic 
strain energy within the rubber.  If the applied stretching force is then slowly reduced, the 
rubber band will use this energy to “pull” back.  If the rubber band is stretched and then 
released suddenly, the band will retract quickly; the strain energy in this case is converted 
into kinetic energy – and sound energy (the “snap”). 
 
When a small weight is placed on a large metal slab, the slab will undergo minute strains, 
too small to be noticed visually.  Nevertheless, the metal behaves like the rubber ball and 
when the weight is removed the slab uses the internally stored strain energy to return to 
its initial state.  On the other hand, a metal bar which is bent considerably, and then laid 
upon the ground, will not nearly recover its original un-bent shape.  It has undergone 
permanent deformation.  Most of the energy supplied has been lost; it has been converted 
into heat energy, which results in a very slight temperature rise in the bar.  Permanent 
deformations of this type are accounted for by plasticity theory, which is treated in 
Chapter 11. 
 
In any real material undergoing deformation, at least some of the supplied energy will be 
converted into heat.  However, with the ideal elastic material under study in this chapter, 
it is assumed that all the energy supplied is converted into strain energy.  When the loads 
are removed, the material returns to its precise initial shape and there is no energy loss; 
for example, a purely elastic ball dropped onto a purely elastic surface would bounce 
back up to the precise height from which it was released. 
 
As a prelude to a discussion of the energy of elastic materials, some important concepts 
from elementary particle mechanics are reviewed in the following sections.  It is shown 
that Newton’s second law, the principle of work and kinetic energy and the principle 
of conservation of mechanical energy are equivalent statements; each can be derived 
from the other.  These concepts are then used to study the energetics of elastic materials. 
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8.1.1 Work and Energy in Particle Mechanics 
 
Work 
 
Consider a force F which acts on a particle, causing it to move through a displacement s, 
the directions in which they act being represented by the arrows in Fig. 8.1.1a.  The work 
W done by F is defined to be cosFs  where   is the angle formed by positioning the 
start of the F and s arrows at the same location with 1800   .  Work can be positive 
or negative: when the force and displacement are in the same direction, then 900    
and the work done is positive; when the force and displacement are in opposite directions, 
then 18090    and the work done is negative. 
 

 
 
Figure 8.1.1: (a)  force acting on a particle, which moves through a displacement s; 

(b) a varying force moving a particle along a path 
 
Consider next a particle moving along a certain path between the points 21 , pp  by the 
action of some force F, Fig. 8.1.1b.  The work done is 
 


2

1

cos
p

p
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where s  is the displacement.  For motion along a straight line, so that 0 , the work is 

dsFW
p

p
2

1

; if F here is constant then the work is simply F times the distance between 

1p  to 2p  but, in most applications, the force will vary and an integral needs to be 
evaluated. 
 
Conservative Forces 
 
From Eqn. 8.1.1, the work done by a force in moving a particle through a displacement 
will in general depend on the path taken.  There are many important practical cases, 
however, when the work is independent of the path taken, and simply depends on the 
initial and final positions, for example the work done in deforming elastic materials (see 
later) – these lead to the notion of a conservative (or potential) force.  Looking at the 
one-dimensional case, a conservative force conF  is one which can always be written as the 

derivative of a function U (the minus sign will become clearer in what follows), 
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dx

dU
F con ,                      (8.1.2) 

 
since, in that case, 
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       (8.1.3) 

 
In this context, the function U is called the potential energy and U  is the change in 
potential energy of the particle as it moves from 1p  to 2p .  If the particle is moved from 

1p  to 2p  and then back to 1p , the net work done is zero and the potential energy U of the 
particle is that with which it started. 
 
Potential Energy 
 
The potential energy of a particle/system can be defined as follows: 
 
Potential Energy: 
the work done in moving a system from some standard configuration to the current 
configuration 
 
Potential energy has the following characteristics: 
(1) The existence of a force field 
(2) To move something in the force field, work must be done 
(3) The force field is conservative 
(4) There is some reference configuration 
(5) The force field itself does negative work when another force is moving something 

against it 
(6) It is recoverable energy 
 
These six features are evident in the following example: a body attached to the coil of a 
spring is extended slowly by a force F, overcoming the spring (restoring) force sprF  (so 

that there are no accelerations and sprFF   at all times), Fig. 8.1.2. 

 

 
 

Figure 8.1.2: a force extending an elastic spring 
 
Let the initial position of the block be 0x  (relative to the reference configuration, 0x ).  

Assuming the force to be proportional to deflection, kxF  , the work done by F in 
extending the spring to a distance x is 
 

sprF Fx
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This is the work done to move something in the elastic spring “force field” and by 
definition is the potential energy (change in the body).  The energy supplied in moving 
the body is said to be recoverable because the spring is ready to pull back and do the 
same amount of work.  
 
The corresponding work done by the conservative spring force sprF  is 
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This work can be seen from the area of the triangles in Fig. 8.1.3: the spring force is zero 
at the equilibrium/reference position ( 0x ) and increases linearly as x increases. 
 

 
 

Figure 8.1.3: force-extension curve for a spring 
■ 

 
The forces in this example depend on the amount by which the spring is stretched.  This is 
similar to the potential energy stored in materials – the potential force will depend in 
some way on the separation between material particles (see below). 
 
Also, from the example, it can be seen that an alternative definition for the potential 
energy U of a system is the negative of the work done by a conservative force in moving 
the system from some standard configuration to the current configuration. 
 
In general then, the work done by a conservative force is related to the potential energy 
through 
 

UWcon              (8.1.6) 

 
Dissipative (Non-Conservative) Forces 
 
When the forces are not conservative, that is, they are dissipative, one cannot find a 
universal function U such that the work done is the difference between the values of U at 
the beginning and end points – one has to consider the path taken by the particle and the 
work done will be different in each case.  A general feature of non-conservative forces is 
that if one moves a particle and then returns it to its original position the net work done 
will not be zero.  For example, consider a block being dragged across a rough surface, 

0x x

kx
0kx

sprFF 
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Fig. 8.1.4.  In this case, if the block slides over and back a number of times, the work 
done by the pulling force F keeps increasing, and the work done is not simply determined 
by the final position of the block, but by its complete path history.  The energy used up in 
moving the block is dissipated as heat (the energy is irrecoverable). 
 

 
 

Figure 8.1.4: Dragging a block over a frictional surface 
 
 
8.1.2 The Principle of Work and Kinetic Energy 
 
In general, a mechanics problem can be solved using either Newton’s second law or the 
principle of work and energy (which is discussed here).  These are two different equations 
which basically say the same thing, but one might be preferable to the other depending on 
the problem under consideration.  Whereas Newton’s second law deals with forces, the 
work-energy principle casts problems in terms of energy. 
 
The kinetic energy of a particle of mass m and velocity v is defined to be 2

2
1 mvK  .  The 

rate of change of kinetic energy is, using Newton’s second law maF  , 
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The change in kinetic energy over a time interval ),( 10 tt  is then 
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where K0 and K1 are the initial and final kinetic energies.  The work done over this time 
interval is 
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and it follows that 
 

KW        Work – Energy Principle     (8.1.10) 
 
One has the following: 
 
 
 

F

frF
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The principle of work and kinetic energy: 
the total work done by the external forces acting on a particle equals the change in kinetic 
energy of the particle 
 
It is not a new principle of mechanics, rather a rearrangement of Newton’s second law of 
motion (or one could have started with this principle, and derived Newton’s second law). 
 
The following example shows how the principle holds for conservative, dissipative and 
applied forces. 
 
Example 
 
A block of mass m is attached to a spring and dragged along a rough surface.  It is 
dragged from left to right, Fig. 8.1.5.  Three forces act on the block, the applied force aplF  

(taken to be constant), the spring force sprF  and the friction force friF  (assumed constant). 

 

 
 

Figure 8.1.5: a block attached to a spring and dragged along a rough surface 
 
Newton’s second law, with kxFspr  , leads to a standard non-homogeneous second order 

linear ordinary differential equation with constant coefficients: 
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Taking the initial position of the block to be 0x  and the initial velocity to be 0x , the 

solution can be found to be 
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where mk / .  The total work done W is the sum of the work done by the applied 
force aplW , the work done by the spring force sprW  and that done by the friction force 

friW : 
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The change in kinetic energy of the block is 
 

friF

aplF

sprF
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Substituting Eqn. 8.1.12 into 8.1.13-14 and carrying out the algebra, one indeed finds that 

KW  : 
 

KWWWW frisprapl                                     (8.1.15) 

 
Now the work done by the spring force is equivalent to the negative of the potential 
energy change, so the work-energy equation (8.1.15) can be written in the alternative 
form1 
 

KUWW sprfriapl                                       (8.1.16) 

 
The friction force is dissipative – it leads to energy loss.  In fact, the work done by the 
friction force is converted into heat which manifests itself as a temperature change in the 
block.  Denoting this energy loss by (see Eqn. 8.1.13) )( 0xxFH frifri  , one has 

 
KUHW sprfriapl                                       (8.1.17) 

 
■ 

 
 
8.1.3 The Principle of Conservation of Mechanical Energy 
 
In what follows, it is assumed that there is no energy loss, so that no dissipative forces 
act.  Define the total mechanical energy of a body to be the sum of the kinetic and 
potential energies of the body.  The work-energy principle can then be expressed in two 
different ways, for this special case: 
 
1. The total work done by the external forces acting on a body equals the change in 

kinetic energy of the body: 
 

KWWW aplcon                    (8.1.18) 

 
2. The total work done by the external forces acting on a body, exclusive of the 

conservative forces, equals the change in the total mechanical energy of the body 
 

KUW apl               (8.1.19) 

 
The special case where there are no external forces, or where all the external forces are 
conservative/potential, leads to KU 0 , so that the mechanical energy is constant.  
This situation occurs, for example, for a body in free-fall {▲Problem 3} and for a freely 
oscillating spring {▲Problem 4}.  Both forms of the work-energy principle can also be 
seen to apply for a spring subjected to an external force {▲Problem 5}. 

                                                 
1 it is conventional to keep work terms on the left and energy terms on the right 
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The Principle of Conservation of Mechanical Energy 
 
The principle of conservation of energy states that the total energy of a system remains 
constant – energy cannot be created or destroyed, it can only be changed from one form 
of energy to another. 
  
The principle of conservation of energy in the case where there is no energy dissipation is 
called the principle of conservation of mechanical energy and states that, if a system is 
subject only to conservative forces, its mechanical energy remains constant; any system 
in which non-conservative forces act will inevitable involve non-mechanical energy (heat 
transfer). 
  
So, when there are only conservative forces acting, one has 
 

KU 0            (8.1.20) 
 
or, equivalently, 
 

iiff UKUK      (8.1.21) 

 
where fi KK ,  are the initial and final kinetic energies and fi UU ,  are the initial and final 

potential energies. 
 
Note that the principle of mechanical energy conservation is not a new separate law of 
mechanics, it is merely a re-expression of the work-energy principle (or of Newton’s 
second law). 
 
 
8.1.4 Deforming Materials 
 
The discussion above which concerned particle mechanics is now generalized to that of a 
deforming material. 
 
Any material consists of many molecules and particles, all interacting in some complex 
way.  There will be a complex system of internal forces acting between the molecules, 
even when the material is in a natural (undeformed) equilibrium state.  If external forces 
are applied, the material will deform and the molecules will move, and hence not only 
will work be done by the external forces, but work will be done by the internal forces.  
The work-energy principle in this case states that the total work done by the external and 
internal forces equals the change in kinetic energy, 
 

KWW  intext          (8.1.22) 

 
In the special case where no external forces act on the system, one has 
 

KW int            (8.1.23) 
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which is a situation known as free vibration.  The case where the kinetic energy is 
unchanging is 
 

0intext WW                                                (8.1.24) 

 
and this situation is known as quasi-static (the quantities here can still depend on time). 
 
The force interaction between the molecules can be grouped into: 

(1) conservative internal force systems 
(2) non-conservative internal force systems (or at least partly non-conservative) 

 
Conservative Internal Forces 
 
First, assuming a conservative internal force system, one can imagine that the molecules 
interact with each other in the manner of elastic springs.  Suppose one could apply an 
external force to pull two of these molecules apart, as shown in Fig. 8.1.6. 
 

 
 

Figure 8.1.6: external force pulling two molecules/particles apart 
 
In this ideal situation one can say that the work done by the external forces equals the 
change in potential energy plus the change in kinetic energy, 
 

KUW ext                         (8.1.25) 

 
The energy U in this case of deforming materials is called  the elastic strain energy, the 
energy due to the molecular arrangement relative to some equilibrium position. 
 
The free vibration case is now KU 0  and the quasi-static situation is UW ext . 

 
Non-Conservative Internal Forces 
 
Consider now another example of internal forces acting within materials, that of a 
polymer with long-chain molecules.  If one could somehow apply an external force to a 
pair of these molecules, as shown in Fig. 8.1.7, the molecules would slide over each 
other.  Frictional forces would act between the molecules, very much like the frictional 
force between the block and rough surface of Fig. 8.1.4.  This is called internal friction.  
Assuming that the internal forces are dissipative, the external work cannot be written in 
terms of a potential energy, KUW ext , since the work done depends on the path 

taken.  One would have to calculate the work done by evaluating an integral. 

internal forces 

external 
force 

external 
force 
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Figure 8.1.7: external force pulling two molecules/particles apart 
 
Similar to Eqn. 8.1.17, however, the energy balance can be written as 
 

UKHW ext                 (8.1.26) 

 
where H is the energy dissipated during the deformation and will depend on the precise 
deformation process.  This energy is dissipated through heat transfer and is conducted 
away through the material. 
 
 
8.1.5 Energy Methods 
 
The work-energy principle provides a method for obtaining solutions to conservative 
static problems and will be pursued in the next section.  The principle is one of a number 
of tools which can be grouped under the heading Energy Methods, such as Castigliano’s 
theorems and the Crotti-Engesser theorem (see later).  These methods can be used to 
solve a wide range of problems involving elastic (linear or non-linear) materials. 
 
Virtual work methods are closely related to energy methods and provide powerful means 
for solving problems whether they involve elastic materials or not; for the case of elastic 
materials, they lead naturally to the principle of minimum potential energy discussed in a 
later section.  These virtual work methods will be discussed in sections 8.5-8.6. 
 
 
8.1.6 Problems 
 
1. Consider the conservative force field  

24

11

xx
F   

What is the potential energy of a particle at some position 1xx   (define the point at 
infinity to be the reference point)?  What work is done by F as the particle moves 
from the reference point to 1xx  ?  What is the work done by the applied force which 

moves the particle from the reference point to 1xx  ? 
 
2. Consider the gravitational force field mg .  Consider a body acted upon by its weight 

mgw   and by an equal and opposite upward force F (arising, for instance, in a 
string).  Suppose the weight to be moved at slow speed from one position to another 
one (so that there is no acceleration and wF  ).  Calculate the work done by F and 

internal forces 

external 
force 

external 
force 



Section 8.1 

Solid Mechanics Part I                                                                                Kelly 241

show that it is independent of the path taken.  What is the potential energy of the 
body?  What is the work done by the gravitational force? 

 
3. Show that both forms of the work-energy principle, Eqns. 8.1.18, 8.1.19, hold for a 

body in free-fall and that the total mechanical energy is constant.  (Use Newton’s 
second law with x positive up, initial height h and zero initial velocity.) 

 
4. Consider a mass m attached to a freely oscillating spring, at initial position 0x  and 

with initial velocity 0x .  Use Newton’s second law to show that 
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where mk / .  Show that both forms of the work-energy principle, Eqns. 8.1.18, 
8.1.19, hold for the mass and that the total mechanical energy is constant. 

 
5. Consider the case of an oscillating mass m attached to a spring with a constant force F 

applied to the mass.  From Newton’s second law, one has Fkxxm   which can be 
solved to obtain 
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Evaluate the change in kinetic energy and the total work done by the applied force to 
show that KW  .  Show also that the total work done by the applied force, 
exclusive of the conservative spring force, is equivalent to KU  . 

 
6. Consider a body dragged a distance s along a rough horizontal surface by a force F, 

Fig. 8.1.4.  By Newton’s second law, xmFF fr  .  By directly integrating this 

equation twice and letting the initial position and velocity of the body be 0x  and 0x  

respectively, show that the work done and the change in kinetic energy of the block 
are both given by  
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so that the principle of work and kinetic energy holds.  How much energy is 
dissipated? 
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8.2 Elastic Strain Energy 
 
The strain energy stored in an elastic material upon deformation is calculated below for a 
number of different geometries and loading conditions.  These expressions for stored 
energy will then be used to solve some elasticity problems using the energy methods 
mentioned in the previous section. 
 
 
8.2.1 Strain energy in deformed Components 
 
Bar under axial load 
 
Consider a bar of elastic material fixed at one end and subjected to a steadily increasing 
force P, Fig. 8.2.1.  The force is applied slowly so that kinetic energies are negligible.  
The initial length of the bar is L .  The work dW  done in extending the bar a small 
amount ∆d  is1  
 

∆= PddW                       (8.2.1) 
 

 
 

Figure 8.2.1: a bar loaded by a force 
 
It was shown in §7.1.2 that the force and extension ∆  are linearly related through 

EAPL /=∆ , Eqn. 7.1.5, where E is the Young’s modulus and A is the cross sectional 
area.  This linear relationship is plotted in Fig. 8.2.2.  The work expressed by Eqn. 8.2.1 is 
the white region under the force-extension curve (line).  The total work done during the 
complete extension up to a final force P and final extension ∆  is the total area beneath 
the curve. 
 
The work done is stored as elastic strain energy U and so 
 

EA
LPPU

22
1 2

=∆=      (8.2.2) 

 
If the axial force (and/or the cross-sectional area and Young’s modulus) varies along the 
bar, then the above calculation can be done for a small element of length dx .  The energy 
stored in this element would be EAdxP 2/2  and the total strain energy stored in the bar 
would be 

 
1 the small change in force dP which occurs during this small extension may be neglected, since it will 
result in a smaller-order term of the form dPdΔ 

P

L ∆d

∆
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Figure 8.2.2: force-displacement curve for uniaxial load 
 
The strain energy is always positive, due to the square on the force P, regardless of 
whether the bar is being compressed or elongated. 
 
Note the factor of one half in Eqn. 8.2.2.  The energy stored is not simply force times 
displacement because the force is changing during the deformation. 
 
Circular Bar in Torsion 
 
Consider a circular bar subjected to a torque T.  The torque is equivalent to a couple: two 
forces of magnitude F acting in opposite directions and separated by a distance r2  as in 
Fig. 8.2.3; FrT 2= .  As the bar twists through a small angle φ∆ , the forces each move 
through a distance s r φ∆ = ∆ .  The work done is therefore ( )2W F s T φ∆ = ∆ = ∆ . 
 

 
 

Figure 8.2.3: torque acting on a circular bar 
 
It was shown in §7.2 that the torque and angle of twist are linearly related through Eqn. 
7.2.10, GJTL /=φ , where L is the length of the bar, G is the shear modulus and J is the 
polar moment of inertia.  The angle of twist can be plotted against the torque as in Fig. 
8.2.4. 
 
The total strain energy stored in the cylinder during the straining up to a final angle of 
twist φ  is the work done, equal to the shaded area in Fig. 8.2.4, leading to 
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GJ
LTTU

22
1 2

== φ            (8.2.4) 

 

 
 

Figure 8.2.4: torque – angle of twist plot for torsion 
 
Again, if the various quantities are varying along the length of the bar, then the total strain 
energy can be expressed as 
 

dx
GJ
TU

L

∫=
0

2

2
               (8.2.5) 

 
Beam subjected to a Pure Moment 
 
As with the bar under torsion, the work done by a moment M as it moves through an 
angle θd  is θMd .  The moment is related to the radius of curvature R through Eqns. 
7.4.36-37, REIM /= , where E is the Young’s modulus and I is the moment of inertia.   
The length L of a beam and the angle subtended θ  are related to R through θRL = , Fig. 
8.2.5, and so moment and angle θ  are linearly related through EIML /=θ . 
 

 
 

Figure 8.2.5: beam of length L under pure bending 
 
The total strain energy stored in a bending beam is then 
 

EI
LMMU

22
1 2

== θ            (8.2.6) 

 
and if the moment and other quantities vary along the beam, 
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dx
EI

MU
L

∫=
0

2

2
                   (8.2.7) 

 
This expression is due to the flexural stress σ .  A beam can also store energy due to 
shear stress τ ; this latter energy is usually much less than that due to the flexural stresses 
provided the beam is slender – this is discussed further below. 
 
Example 
 
Consider the bar with varying circular cross-section shown in Fig. 8.2.6.  The Young’s 
modulus is GPa200 . 
 

 
 

Figure 8.2.6: a loaded bar 
 
The strain energy stored in the bar when a force of kN2  is applied at the free end is 
 

( ) ( )
( ) ( ) ( )
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dx
EA
PU   (8.2.8) 

■ 
 
 
8.2.2 The Work-Energy Principle 
 
The work-energy principle for elastic materials, that is, the fact that the work done by 
external forces is stored as elastic energy, can be used directly to solve some simple 
problems.  To be precise, it can be used to solve problems involving a single force and for 
solving for the displacement in the direction of that force.  By force and displacement 
here it is meant generalised force and generalised displacement, that is, a 
force/displacement pair, a torque/angle of twist pair or a moment/bending angle pair. 
 
More complex problems need to be solved using more sophisticated energy methods, 
such as Castigliano’s method discussed further below. 
 
Example 
 
Consider the beam of length L shown in Fig. 8.2.7, pinned at one end (A) and simply 
supported at the other (C).  A moment 0M  acts at B, a distance 1L  from the left-hand end.  
The cross-section is rectangular with depth b and height h.  The work-energy principle 
can be used to calculate the angle Bθ  through which the moment at B rotates. 

m2m2

kN2

cm5=r cm3=r



Section 8.2 

Solid Mechanics Part I                                                                                Kelly 246 

 

 
 

Figure 8.2.7: a beam subjected to a moment at B 
 
The moment along the beam can be calculated from force and moment equilibrium,  
 

( )





<<−

<<−
=

LxLLxM

LxLxM
M

10

10

,/1

0,/
                      (8.2.9) 

 
The strain energy stored in the bar (due to the flexural stresses only) is 
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∫ ∫ ∫     (8.2.10) 

 
The work done by the applied moment is 2/0 BM θ  and so  
 

2
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■ 
 
 
8.2.3 Strain Energy Density 
 
The strain energy will in general vary throughout a body and for this reason it is useful to 
introduce the concept of strain energy density, which is a measure of how much energy 
is stored in small volume elements throughout a material. 
 
Consider again a bar subjected to a uniaxial force P.  A small volume element with edges 
aligned with the zyx ,,  axes as shown in Fig. 8.2.8 will then be subjected to a stress xxσ  
only.  The volume of the element is dxdydzdV = . 
 
From Eqn. 8.2.2, the strain energy in the element is 
 

( )
Edydz

dxdydz
U xx

2

2σ
=              (8.2.12) 
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Figure 8.2.8: a volume element under stress 
 
The strain energy density u is defined as the strain energy per unit volume: 
 

E
u xx

2

2σ
=         (8.2.13) 

 
The total strain energy in the bar may now be expressed as this quantity integrated over 
the whole volume, 
 

dVuU
V
∫= ,          (8.2.14) 

 
which, for a constant cross-section A and length L reads dxuAU

L

∫=
0

.  From Hooke’s 

law, the strain energy density of Eqn. 8.2.13 can also be expressed as 
 

xxxxu εσ
2
1

=          (8.2.15) 

 
As can be seen from Fig. 8.2.9, this is the area under the uniaxial stress-strain curve. 
 

 
 

Figure 8.2.9: stress-strain curve for elastic material 
 
Note that the element does deform in the y and z directions but no work is associated with 
those displacements since there is no force acting in those directions. 
 
The strain energy density for an element subjected to a yyσ  stress only is, by the same 
arguments, 2/yyyyεσ , and that due to a zzσ  stress is 2/zzzzεσ .  Consider next a shear 
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stress xyσ  acting on the volume element to produce a shear strain xyε  as illustrated in Fig. 
8.2.10.  The element deforms with small angles θ  and λ  as illustrated.  Only the stresses 
on the upper and right-hand surfaces are shown, since the stresses on the other two 
surfaces do no work.  The force acting on the upper surface is dxdzxyσ  and moves 
through a displacement dyλ .  The force acting on the right-hand surface is dydzxyσ  and 
moves through a displacement dxθ .  The work done when the element moves through 
angles θd  and λd  is then, using the definition of shear strain, 
 

( )( ) ( )( ) ( ) ( )xyxyxyxy ddxdydzdxddydzdyddxdzdW εσθσλσ 2=+=          (8.2.16) 
 
and, with shear stress proportional to shear strain, the strain energy density is 
 

xyxyxyxy du εσεσ == ∫2                    (8.2.17) 
 
 

 
 

Figure 8.2.10: a volume element under shear stress 
 
The strain energy can be similarly calculated for the other shear stresses and, in summary, 
the strain energy density for a volume element subjected to arbitrary stresses is 
 

( ) ( )zxzxyzyzxyxyzzzzyyyyxxxxu εσεσεσεσεσεσ +++++=
2
1           (8.2.18) 

 
Using Hooke’s law, Eqns. 6.1.9, and Eqn. 6.1.5, the strain energy density can also be 
written in the alternative and useful forms {▲Problem 4} 
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(8.2.19) 
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Strain Energy in a Beam due to Shear Stress 
 
The shear stresses arising in a beam at location y from the neutral axis are given by Eqn. 
7.4.28, )(/)()( yIbVyQy =τ , where Q is the first moment of area of the section of beam 
from y to the outer surface, V is the shear force, I is the moment of inertia of the complete 
cross-section and b is the thickness of the beam at y.  From Eqns. 8.2.19a and 8.2.14 then, 
the total strain energy in a beam of length L due to shear stress is 
 

dxdA
b
Q

I
VdVU

A

L

V








== ∫∫∫ 2

2

0
2

22

2
1

2 µµ
τ         (8.2.20) 

 
Here V ,µ  and I are taken to be constant for any given cross-section but may vary along 
the beam; Q  varies and b may vary over any given cross-section.  Expression 8.2.20 can 
be simplified by introducing the form factor for shear sf , defined as 
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Axf

A
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2)(                (8.2.21) 

 
so that 
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U
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2
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            (8.2.22) 

 
The form factor depends only on the shape of the cross-section.  For example, for a 
rectangular cross-section, using Eqn. 7.4.29,  
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In a similar manner, the form factor for a circular cross-section is found to be 9/10  and 
that of a very thin tube is 2. 
 
 
8.2.4 Castigliano’s Second Theorem 
 
The work-energy method is the simplest of energy methods.  A more powerful method is 
that based on Castigliano’s second theorem2, which can be used to solve problems 
involving linear elastic materials.  As an introduction to Castigliano’s second theorem, 
consider the case of uniaxial tension, where EALPU 2/2= .  The displacement through 
which the force moves can be obtained by a differentiation of this expression with respect 
to that force,  
 

∆==
EA
PL

dP
dU     (8.2.24) 

 
2 Casigliano’s first theorem will be discussed in a later section 
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Similarly, for torsion of a circular bar, GJLTU 2/2= , and a differentiation gives 

φ== GJTLdTdU // .  Further, for bending of a beam it is also seen that θ=dMdU / . 
 
These are examples of Castigliano’s theorem, which states that, provided the body is in 
equilibrium, the derivative of the strain energy with respect to the force gives the 
displacement corresponding to that force, in the direction of that force.  When there is 
more than one force applied, then one takes the partial derivative.  For example, if n 
independent forces nPPP ,,, 21   act on a body, the displacement corresponding to the ith 
force is 
 

i
i P

U
∂
∂

=∆           (8.2.25) 

 
Before proving this theorem, here follow some examples. 
 
Example 
 
The beam shown in Fig. 8.2.11 is pinned at A, simply supported half-way along the beam 
at B and loaded at the end C by a force P and a moment 0M . 
 

 
 

Figure 8.2.11: a beam subjected to a force and moment at C 
 
The moment along the beam can be calculated from force and moment equilibrium,  
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The strain energy stored in the bar (due to the flexural stresses only) is 
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          (8.2.27) 

 
In order to apply Castigliano’s theorem, the strain energy is considered to be a function of 
the two external loads, ( )0, MPUU = .  The displacement associated with the force P is 
then 
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The rotation associated with the moment is 
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■ 
 
Example 
 
Consider next the beam of length L shown in Fig. 8.2.12, built in at both ends and loaded 
centrally by a force P.  This is a statically indeterminate problem.  In this case, the strain 
energy can be written as a function of the applied load and one of the unknown reactions. 
 

 
 

Figure 8.2.12: a statically indeterminate beam 
 
First, the moment in the beam is found from equilibrium considerations to be 

 

2/0,
2

LxxPMM A <<+=              (8.2.30) 

 
where AM  is the unknown reaction at the left-hand end.  Then the strain energy in the 
left-hand half of the beam is 
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The strain energy in the complete beam is double this: 
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Writing the strain energy as ( )AMPUU ,= , the rotation at A is 
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But 0=Aθ  and so Eqn. 8.2.33 can be solved to get 8/PLM A −= .  Then the 
displacement at the centre of the beam is 
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EI
LM
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323

=+=
∂
∂

=∆      (8.2.34) 

 
This is positive in the direction in which the associated force is acting, and so is 
downward. 

■ 
 
Proof of Castigliano’s Theorem 
 
A proof of Castiligliano’s theorem will be given here for a structure subjected to a single 
load.  The load P produces a displacement ∆  and the strain energy is 2/∆= PU , Fig. 
8.2.13.  If an additional force dP  is applied giving an additional deformation ∆d , the 
additional strain energy is  
 

∆+∆= dPdPddU
2
1                (8.2.35) 

 
If the load dPP +  is applied from zero in one step, the work done is ( )( ) 2/∆+∆+ ddPP .  
Equating this to the strain energy dUU +  given by Eqn. 8.2.35 then gives dPPd ∆=∆ .  
Substituting into Eqn. 8.2.35 leads to 
 

∆+∆= dPddPdU
2
1               (8.2.36) 

 
Dividing through by dP  and taking the limit as 0d∆→  results in Castigliano’s second 
theorem, ∆=dPdU / . 
 

 
 

Figure 8.2.13: force-displacement curve 
 
In fact, dividing Eqn. 8.2.35 through by ∆d  and taking the limit as 0→∆d  results in 
Castigliano’s first theorem, PddU =∆/ .  It will be shown later that this first theorem, 
unlike the second, in fact holds also for the case when the elastic material is non-linear. 
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8.2.5 Dynamic Elasticiy 
 
Impact and Dynamic Loading 
 
Consider the case of a weight P dropped instantaneously onto the end of an elastic bar.  If 
the weight P had been applied gradually from zero, the strain energy stored at the final 
force P and final displacement 0∆  would be 02

1 ∆P .  However, the instantaneously 
applied load is constant throughout the deformation and work done up to a displacement 

0∆  is 0∆P , Fig. 8.2.14.  The difference between the two implies that the bar acquires a 
kinetic energy (see Eqn. 8.1.19); the material particles accelerate from their equilibrium 
positions during the compression. 
 
As deformation proceeds beyond 0∆ , it is clear from Fig. 8.2.14 that the strain energy is 
increasing faster than the work being done by the weight and so there must be a drop in 
kinetic energy; the particles begin to decelerate.  Eventually, at 0max 2∆=∆ , the work 
done by the weight exactly equals the strain energy stored and the material is at rest.  
However, the material is not in equilibrium – the equilibrium position for a load P is 0∆  – 
and so the material begins to accelerate back to 0∆ . 
 

 
 

Figure 8.2.14: non-equilibrium loading 
 
The bar and weight will continue to oscillate between 0 and max∆  indefinitely.  In a real 
(inelastic) material, internal friction will cause the vibration to decay. 
 
Thus the maximum compression of a bar under impact loading is twice that of a bar 
subjected to the same load gradually. 
 
Example 
 
Consider a weight w dropped from a height h.  If one is interested in the final, maximum, 
displacement of the bar, max∆ , one does not need to know about the detailed and complex 
transfer of energies during the impact; the energy lost by the weight equals the strain 
energy stored in the bar: 
 

( ) maxmax 2
1

∆=∆+ Phw       (8.2.37) 
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where P is the force acting on the bar at its maximum compression.  For an elastic bar, 
LEAP /max∆= , or, introducing the stiffness k so that max∆= kP ,  

 

( )
L

EAkkhw =∆=∆+ ,
2
1 2

maxmax       (8.2.38) 

 
which is a quadratic equation in max∆  and can be solved to get 
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If the force w had been applied gradually, then the displacement would have been 

kw /st =∆ , the “st” standing for “static”, and Eqn. 8.2.39 can be re-written as 
 









∆
++∆=∆

st
stmax

211 h                                (8.2.40) 

 
If 0=h , so that the weight is just touching the bar when released, then stmax 2∆=∆ . 

■ 
 
 
8.2.6 Problems 
 
1. Show that the strain energy in a bar of length L and cross sectional area A hanging 

from a ceiling and subjected to its own weight is given by (at any section, the force 
acting is the weight of the material below that section) 

E
LgAU

6

322ρ
=       

 
2. Consider the circular bar shown below subject to torques at the free end and where the 

cross-sectional area changes.  The shear modulus is GPa80=G .  Calculate the strain 
energy in the bar(s). 

 
 
3. Two bars of equal length L and cross-sectional area A are pin-supported and loaded by 

a force F as shown below.  Derive an expression for the vertical displacement at point 
A using the direct work-energy method, in terms of L, F, A and the Young’s modulus 
E. 

m1m1

kNm4

cm5=r cm3=r

kNm6
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4. Derive the strain energy density equations 8.2.19. 
 
5. For the beam shown in Fig. 8.2.7, use the expression 8.2.22 to calculate the strain 

energy due to the shear stresses.  Take the shear modulus to be GPa80=G .  Compare 
this with the strain energy due to flexural stress given by Eqn. 8.2.10. 

 
6. Consider a simply supported beam of length L subjected to a uniform load w  N/m.  

Calculate the strain energy due to both flexural stress and shear stress for (a) a 
rectangular cross-section of depth times height hb× , (b) a circular cross-section with 
radius r.  What is the ratio of the shear-to-flexural strain energies in each case? 

 
7. Consider the tapered bar of length L and square cross-section shown below, built-in at 

one end and subjected to a uniaxial force F at its free end.  The thickness is h  at the 
built-in end.  Evaluate the displacement in terms of the (constant) Young’s modulus E 
at the free end using (i) the work-energy theorem, (ii) Castigliano’s theorem 

 

 
 
8. Consider a cantilevered beam of length L and constant cross-section subjected to a 

uniform load w  N/m.  The beam is built-in at 0=x  and has a Young’s modulus E.  
Use Castigliano’s theorem to calculate the deflection at Lx = .  Consider only the 
flexural strain energy.  [Hint: place a fictitious “dummy” load F at Lx =  and set to 
zero once Castigliano’s theorem has been applied] 

 
9. Consider the statically indeterminate uniaxial problem shown below, two bars joined 

at Lx = , built in at 0=x  and Lx 2= , and subjected to a force F at the join.  The 
cross-sectional area of the bar on the left is 2A and that on the right is A.  Use (i) the 
work-energy theorem and (ii) Castigliano’s theorem to evaluate the displacement at 

Lx = . 
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8.3 Complementary Energy 
 
The linear elastic solid was considered in the previous section, with the characteristic 
straight force-deflection curve for axial deformations, Fig.8.2.2.  Here, consider the more 
general case of a bar of non-linear elastic material, of length L, fixed at one end and 
subjected to a steadily increasing force P.  The work dW  done in extending the bar a 
small amount d  is  
 

 PddW .                           (8.3.1) 
 
Force is now no longer proportional to extension  , Fig. 8.3.1.  However, the total work 
done during the complete extension up to a final force P and final extension   is once 
again the total area beneath the force-extension curve.  The work done is equal to the 
stored elastic strain energy which must now be expressed as an integral, 
 

 


dPU
0

               (8.3.2) 

 
The strain energy can be calculated if the precise force-deflection relationship is known. 
 

 
 

Figure 8.3.1: force-displacement curve for a non-linear material 
 
 
8.3.1 Complementary Energy 
 
The force-deflection curve is naturally divided into two regions, beneath the curve and 
above the curve, Fig. 8.3.2.  The area of the region under the curve is the strain energy.  It 
is helpful to introduce a new concept, the complementary energy C, which is the area 
above the curve; this can be seen to be given by 
 

dPC
P

 
0

.             (8.3.3) 

 
For a linear elastic material, UC  .  Although C has units of energy, it has no real 
physical meaning. 
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Figure 8.3.2: strain energy and complementary energy for an elastic material 
 
 
8.3.2 The Crotti-Engesser Theorem 
 
Suppose an elastic body is loaded by n independent loads nPPP ,,, 21  .  The strain energy 

is then the work done by these loads, 
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It follows that 
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which is known as Castigliano’s first theorem. 
 
Similarly, the total complementary energy is 
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and it follows that  
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which is known as the Crotti-Engesser theorem.  For a linear elastic material, UC  , 
and the Crotti-Engesser theorem reduces to Castigliano’s second theorem, jj PU  / , 

Eqn. 8.2.25. 
 
 
8.3.3 Problems 
 
1. The force-deflection equation for a non-linear elastic material is given by 3 P .  

Find expressions for the strain energy and the complementary energy in terms of (i) P 
only, (ii) Δ only.  Check that  PCU .  What is the ratio UC / ?  

P

U


C
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8.4 Strain Energy Potentials 
 
 
8.4.1 The Linear Elastic Strain Energy Potential 
 
The strain energy u was introduced in §8.21.  From Eqn 8.2.19, the strain energy can be 
regarded as a function of the strains: 
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(8.4.1) 
 
Differentiating with respect to xx  (holding the other strains constant), 
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From Hooke’s law, Eqn 6.1.9, with Eqn 6.1.5,     12/E , the expression on the 

right is simply xx .  The strain energy can also be differentiated with respect to the other 

normal strain components and one has 
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The strain energy is a potential, meaning that it provides information through a 
differentiation.  Note the similarity between these equations and the equation relating a 
conservative force and the potential energy seen in §8.1: FdxdU / . 
 
Differentiating Eqn. 8.4.1 with respect to the shear stresses results in 
 

zx
zx

yz
yz

xy
xy

uuu 








2,2,2 











          (8.4.4) 

 
The fact that Eqns. 8.4.4 has the factor of 2 on the right hands side but Eqns. 8.4.3 do not 
is not ideal.  There are two common ways of viewing the strain energy potential to 
overcome this lack of symmetry.  First, the strain energy can be taken to be a function of 
the six independent strains, zxyzxyzzyyxx  ,,,,, , the latter three being the engineering 

shear strains, xyxy  2 , etc.  Re-writing Eqn. 8.4.1 in terms of the engineering shear 

strains then leads to the set of equations {▲Problem 1} 
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1 strictly speaking, this is the strain energy density, but it should be clear from the context whether it is 
energy per unit volume or not; the word density will often be omitted henceforth for brevity 
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The second method is to treat the strain energy as a function of nine independent strains, 
the three normal strains and xzzxzyyzyxxy  ,,,,, .  In other words the fact that the 

strains xy  and yx  are the same is ignored and the strain energy is differentiated with 

respect to these as though they were independent.  In order to implement this approach, 
the strain energy needs to be derived anew treating xy  and yx  as independent 

quantities.  This simply means that Fig. 8.2.10 is re-drawn as Fig. 8.4.1 below, and Eqn. 
8.2.16 is re-expressed using 2/)( yxxyxy    as 

 
        yxyxxyxyxyyx dddxdydzdxddydzdyddxdzdW          (8.4.6) 

 
so that 
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Figure 8.4.1: a volume element under shear stress 
 
Re-writing Eqn. 8.4.1 and differentiation then leads to {▲Problem 2} 
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 (8.4.8) 

 
These equations can be expressed in the succinct form 
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8.4.2 The Elastic Strain Energy Potential 
 
Eqns. 8.4.9 was derived for an isotropic linear elastic material.  In fact these equations are 
valid very generally, for non-linear and not-necessarily isotropic materials.  Generalising 

dx

dy

yx

x

dy

y




xy

dx



Section 8.4 

Solid Mechanics Part I                                                                                Kelly 260

the above discussion, recall that the strain energy is the area beneath the stress-strain 
curve, Fig. 8.4.2, and 
 

ddudW          (8.4.10) 
 

 
 

Figure 8.4.2: stress-strain curve for a non-linear material 
 
When the material undergoes increments in strain xxd , xyd , etc., the increment in strain 

energy is 
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If the strain energy is a function of the nine strains ij , ( )iju u  , its increment can also 

be expressed as 
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Subtracting Eqns 8.4.12 from 8.4.11 then gives 
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Because the strains are independent, that is, any one of them can be adjusted without 
changing the others, one again arrives at Eqns. 8.4.8-9, only now it has been shown that 
this result holds very generally. 
 
Note that in the case of an incompressible material, 0 zzyyxx  , so that the strains 

are not independent, and Eqns. 8.4.8-9 must be amended. 
 
 
8.4.3 Symmetry of the Elastic Stiffness Matrix 
 
Consider again the generalised Hooke’s Law, Eqn. 6.3.1.  Using Eqn. 8.4.9: 
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Since the order of partial differentiation for these second partial derivatives should be 
immaterial, it follows that 6116 CC  .  Following the same procedure for the rest of the 

stresses and strains, it can be seen that the stiffness matrix in Eqn. 6.3.1 is symmetric and 
so there are only 21 independent elastic constants in the most general case of anisotropic 
elasticity. 
 
 
8.4.4 The Complementary Energy Potential 
 
Analogous to Eqns. 8.4.10-13, an increment in complementary energy density can be 
expressed as  
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with 
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so that 
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With the stresses independent, one has an expression analogous to 8.4.9, 
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8.4.5 Problems 
 
1. Derive equations 8.4.5 
 
2. Derive equations 8.4.8 
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8.5 Virtual Work 
 
Consider a mass attached to a spring and pulled by an applied force aplF , Fig. 8.5.1a.  

When the mass is in equilibrium, 0 aplspr FF , where kxFspr   is the spring force 

with x  the distance from the spring reference position. 
 

 
 
Figure 8.5.1: a force extending an elastic spring; (a) block in equilibrium, (b) block 

not at its equilibrium position 
 
In order to develop a number of powerful techniques based on a concept known as 
virtual work, imagine that the mass is not in fact at its equilibrium position but at an 
(incorrect) non-equilibrium position xx  , Fig. 8.5.1b.  The imaginary displacement x  
is called a virtual displacement.  Define the virtual work W  done by a force to be the 
equilibrium force times this small imaginary displacement x .  It should be emphasized 
that virtual work is not real work – no work has been performed since x  is not a real 
displacement which has taken place; this is more like a “thought experiment”.  The virtual 
work of the spring force is then xkxxFW sprspr   .  The virtual work of the applied 

force is xFW aplapl   .  The total virtual work is  

 
  xFkxWWW aplaplspr           (8.5.1) 

 
There are two ways of viewing this expression.  First, if the system is in equilibrium 
( 0 aplFkx ) then the virtual work is zero, 0W .  Alternatively, if the virtual work 

is zero then, since x  is arbitrary, the system must be in equilibrium.  Thus the virtual 
work idea gives one an alternative means of determining whether a system is in 
equilibrium. 
 
The symbol   is called a variation so that, for example, x  is a variation in the 
displacement (from equilibrium). 
 
Virtual work is explored further in the following section. 
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8.5.1 Principle of Virtual Work: a single particle 
 
A particle of mass m is acted upon by a number of forces, Nfff ,,, 21  , Fig. 8.5.2.  

Suppose the particle undergoes a virtual displacement u ; to reiterate, these impressed 
forces if  do not cause the particle to move, one imagines it to be incorrectly positioned a 

little away from the true equilibrium position. 
 

 
 

Figure 8.5.2: a particle in equilibrium under the action of a number of forces 
 
If the particle is moving with an acceleration a, the quantity am  is treated as an inertial 
force.  The total virtual work is then (each term here is the dot product of two vectors) 
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       (8.5.2) 

 
Now if the particle is in equilibrium by the action of the effective (impressed plus inertial) 
force, then 
 

0W          (8.5.3) 
 
This can be expressed as follows: 
 
The principle of virtual work (or principle of virtual displacements) I: 
if a particle is in equilibrium under the action of a number of forces (including the inertial 
force) the total work done by the forces for a virtual displacement is zero 
 
Alternatively, one can define the external virtual work   uf  iWext  and the virtual 

kinetic energy ua   mK  in which case the principle takes the form KW  ext  

(compare with the work-energy principle, Eqn. 8.1.10). 
 
In the above, the principle of virtual work was derived using Newton’s second law.   One 
could just as well regard the principle of virtual work as the fundamental principle and 
from it derive the conditions for equilibrium.  In this case one can say that1  
 
 
 

                                                 
1 note the word any here: this must hold for all possible virtual displacements, for it will always be possible 

to find one virtual displacement which is perpendicular to the resultant of the forces, so that   0 uf   

even though   f  is not necessarily zero 
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The principle of virtual work (or principle of virtual displacements) II: 
a particle is in equilibrium under the action of a system of forces (including the inertial 
force) if the total work done by the forces is zero for any virtual displacement of the 
particle 
 
Constraints 
 
In many practical problems, the particle will usually be constrained to move in only 
certain directions.  For example consider a ball rolling over a table, Fig. 8.5.3.  If the ball 
is in equilibrium then all the forces sum to zero, m  R f a 0 , where one 

distinguishes between the non-reaction forces if  and the reaction force R.  If the virtual 

displacement u  is such that the constraint is not violated, that is the ball is not allowed 
to go “through” the table, then u  and R are perpendicular, the virtual work done by the 
reaction force is zero and    0  uaf  mW .  This is one of the benefits of the 

principle of virtual work; one does not need to calculate the forces of constraint R in 
order to determine the forces if  which maintain the particle in equilibrium. 

 

 
 

Figure 8.5.3: a particle constrained to move over a surface 
 
The term kinematically admissible displacement is used to mean one that does not 
violate the constraints, and hence one arrives at the version of the principle which is often 
used in practice: 
 
The principle of virtual work (or principle of virtual displacements) III: 
a particle is in equilibrium under the action of a system of forces (including the inertial 
force) if the total work done by the forces (excluding reaction forces) is zero for any 
kinematically admissible virtual displacement of the particle 
 
Whether one uses a kinematically admissible virtual displacement and so disregard 
reaction forces, or permit a virtual displacement that violates the constraint conditions 
will usually depend on the problem at hand.  In this next example, use is made of a 
kinematically inadmissible virtual displacement. 
 
Example  
 
Consider a rigid bar of length L supported at its ends and loaded by a force F a distance a 
from the left hand end, Fig. 8.5.3a.  Reaction forces CA RR ,  act at the ends.  Let point C 

undergo a virtual displacement u .  From similar triangles, the displacement at B is 
uLa )/( .  End A does not move and so no virtual work is performed there.  The total 

virtual work is 
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u
L

a
FuRW C            (8.5.4) 

 
Note the minus sign here – the displacement at B is in a direction opposite to that of the 
action of the load and hence the work is negative.  The beam is in equilibrium when 

0W  and hence LaFRC / . 

 

 
 
Figure 8.5.3: a loaded rigid bar; (a) bar geometry, (b) a virtual displacement at end 

C 
■ 

 
 
8.5.2 Principle of Virtual Work: deformable bodies 
 
A deformable body can be imagined to undergo virtual displacements (not necessarily the 
same throughout the body).  Virtual work is done by the externally applied forces – 
external virtual work – and by the internal forces – internal virtual work.  Looking 
again at the spring problem of Fig. 8.5.1, the external virtual work is xFW aplext    and, 

considering the spring force to be an “internal” force, the internal virtual work is 
xkxW  int .  This latter virtual work can be re-written as UW  int  where U  is 

the virtual potential energy change which occurs when the spring is moved a distance x  
(keeping the spring force constant). 
 
In the same way, the internal virtual work of an elastic body is the (negative of the) 
virtual strain energy and the principle of virtual work can be expressed as 
 

UWext    Principle of Virtual Work for an Elastic Body   (8.5.4) 

 
The principle can be extended to accommodate dissipation (energy loss), but only elastic 
materials will be examined here. 
 
The virtual strain energy for a uniaxial rod is derived next. 
 
 
8.5.3 Virtual Strain Energy for a Uniaxially Loaded Bar 
 
In what follows, to distinguish between the strain energy and the displacement, the former 
will now be denoted by w and the latter by u. 
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Consider a uniaxial bar which undergoes strains  .  The strain is the unit change in 
length and, considering an element of length dx , Fig. 8.5.4a, the strain is 
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in the limit as 0x .  With ddw  , the strain energy density is 
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and the strain energy is  
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This is the actual strain energy change when the bar undergoes actual strains  .  For the 
simple case of constant A and L and constant strain Ldxdu //   where   is the 
elongation of the bar, Eqn. 8.5.7 reduces to LAEU 2/2  (equivalent to Eqn. 8.2.2). 
 

 
 

Figure 8.5.4: element undergoing actual and virtual displacements; (a) actual 
displacements, (b) virtual displacements 

 
It will now be shown that the internal virtual work done as material particles undergo 
virtual displacements u  is given by U , with U given by Eqn. 8.5.7. 
 
Consider an element to “undergo” virtual displacements u , Fig. 8.5.4b, which are, by 
definition, measured from the actual displacements.  The virtual displacements give rise 
to virtual strains: 
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again in the limit as 0x . Since  dxdu /  , it follows that 
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In other words, the variation of the derivative is equal to the derivative of the variation2. 
 
One other result is needed before calculating the internal virtual work.  Consider a 
function of the displacement, )(uf .  The variation of f when u undergoes a virtual 
displacement is, by definition, 
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now in the limit as the virtual displacement 0u .  From this one can write 
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The stress   applied to the surface of the element under consideration is an “external 
force”.  The internal force is the equal and opposite stress on the other side of the surface 
inside the element.  The internal virtual work (per unit volume) is then  W .  
Since   is the actual stress, unaffected by the virtual straining, 

 










































22

2

1

2

1

dx

du
E

dx

du
E

dx

du

dx

du
EEW         (8.5.12) 

 
since the Young’s modulus is unaffected by any virtual displacement.  The total work 
done is then 
 

dV
dx

du
EW

v
 








2

int 2

1            (8.5.13) 

 
which, comparing with Eqn. 8.5.7, is the desired result, UW  int . 

 
Example 
 
Two rods with cross sectional areas 21 , AA , lengths 21 , LL  and Young’s moduli 21 , EE  
and joined together with the other ends fixed, as shown in Fig. 8.5.5.  The rods are 
subjected to a force P where they meet.  As the rods elongate/contract, the strain is simply 

LuB / , where Bu  is the displacement of the point at which the force is applied.  The 
total elastic strain energy is, from Eqn. 8.5.7, 
 

                                                 
2 this holds in general for any function; manipulations with variations form a part of a branch of 
mathematics known as the Calculus of Variations, which is concerned in the main with minima/maxima 
problems 
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U                                  (8.5.14) 

 
Introduce now a virtual displacement Bu  at B.  The external virtual work is 

BuPW  ext .  The principle of virtual work, Eqn. 8.5.4, states that 
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Figure 8.8.5: two rods subjected to a force P 
 
From relation 8.5.10,  
 

BBB uu
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1

11            (8.5.16) 

 
The virtual displacement Bu  is arbitrary and so can be cancelled out, giving the result 
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AE

L

AE
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from which the strains and hence stresses can be evaluated.  Note that the reaction forces 
were not involved in this solution method. 

■ 
 
 
8.5.4 Virtual Strain Energy for a Beam 
 
The strain energy in a beam is given by Eqn. 8.2.7, viz. 
 

dx
EI

M
U

L


0

2

2
      (8.5.18) 

 
Using the moment-curvature relation 7.4.37,  22 / dxvdEIM  , where v is the deflection 
of the beam, 
 

P

applied force 

fixed fixed 1L 2L

B
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and the virtual strain energy is  
 

dx
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vdEI
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It is not easy to analyse problems using this expression and the principle of virtual work 
directly, but this expression will be used in the next section in conjunction with the 
related principle of minimum potential energy. 
 
 
8.5.5 Problems 
 
1. Consider a uniaxial bar of length L with constant cross section A and Young’s 

modulus E, fixed at one end and subjected to a force P at the other.  Use the principle 
of virtual work to show that the displacement at the loaded end is EAPLu / . 

 
2. Consider a uniaxial bar of length L, cross sectional area A and Young’s modulus E.  

What factor of EAL is the strain energy when the displacements in the bar are 
xu 310 , with x measured from one end of the bar?  What is the internal virtual 

work for a virtual displacement xu 510 ?  For a constant virtual displacement 
along the bar? 

 
3. A rigid bar rests upon three columns, a central column with Young’s modulus  

GPa100  and two equidistant outer columns with Young’s moduli  GPa200 .  The 
columns are of equal length 1m and cross-sectional area 2cm1 .  The rigid bar is 
subjected to a downward force of kN10 .  Use the principle of virtual work to evaluate 
the vertical displacement downward of the rigid bar. 

 
4. Re-solve problem 3 from §8.2.6 using the principle of virtual displacements. 
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8.6 The Principle of Minimum Potential Energy 
 
The principle of minimum potential energy follows directly from the principle of 
virtual work (for elastic materials). 
 
 
8.6.1 The Principle of Minimum Potential Energy 
 
Consider again the example given in the last section; in particular re-write Eqn. 8.5.15 as 
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AE

L

AE
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The quantity inside the curly brackets is defined to be the total potential energy of the 
system,  , and the equation states that the variation of   is zero – that this quantity does 
not vary when a virtual displacement is imposed: 
 

0         (8.6.2) 
 
The total potential energy as a function of displacement u is sketched in Fig. 8.6.1.  With 
reference to the figure, Eqn. 8.6.2 can be interpreted as follows: the total potential energy 
attains a stationary value (maximum or minimum) at the actual displacement ( 1u ); for 

example, 0  for an incorrect displacement 2u .  Thus the solution for displacement 
can be obtained by finding a stationary value of the total potential energy.  Indeed, it can 
be seen that the quantity inside the curly brackets in Fig. 8.6.1 attains a minimum for the 
solution already derived, Eqn. 8.5.17. 
 

 
 

Figure 8.6.1: the total potential energy of a system 
 
To generalise, define the “potential energy” of the applied loads to be extWV    so that 

 
VU         (8.6.3) 

 
The external loads must be conservative, precluding for example any sliding frictional 
loading.  Taking the total potential energy to be a function of displacement u, one has 
 

0
)(




 u
du

ud                     (8.6.4) 

)(u

1u
1u

2u

2u
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Thus of all possible displacements u satisfying the loading and boundary conditions, the 
actual displacement is that which gives rise to a stationary point 0/  dud  and the 
problem reduces to finding a stationary value of the total potential energy VU  . 
 
Stability 
 
To be precise, Eqn. 8.6.2 only demands that the total potential energy has a stationary 
point, and in that sense it is called the principle of stationary potential energy.  One can 
have a number of stationary points as sketched in Fig. 8.6.2.  The true displacement is one 
of the stationary values 321 ,, uuu . 

 

 
 

Figure 8.6.2: the total potential energy of a system 
 
Consider the system with displacement 2u .  If an external force acts to give the particles 
of the system some small initial velocity and hence kinetic energy, one has K0 .  
The particles will now move and so the displacement 2u  changes.  Since   is a 
minimum there it must increase and so the kinetic energy must decrease, and so the 
particles remain close to the equilibrium position.  For this reason 2u  is defined as a 
stable equilibrium point of the system.  If on the other hand the particles of the body were 
given small initial velocities from an initial displacement 1u  or 3u , the kinetic energy 

would increase dramatically; these points are called unstable equilibrium points.  Only 
the state of stable equilibrium is of interest here and the principle of stationary potential 
energy in this case becomes the principle of minimum potential energy. 
 
 
8.6.2 The Rayleigh-Ritz Method 
 
In applications, the principle of minimum potential energy is used to obtain approximate 
solutions to problems which are otherwise difficult or, more usually, impossible to solve 
exactly.  It forms one basis of the Finite Element Method (FEM), a general technique 
for solving systems of equations which arise in complex mechanics problems. 
 
Example 
 
Consider a uniaxial bar of length L, young’s modulus E and varying cross-section  

)/1(0 LxAA  , fixed at one end and subjected to a force F at the other.  The true 



1u 2u 3u
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solution for displacement to this problem can be shown to be    LxEAFLu /1ln/ 0  .  

To see how this might be approximated using the principle, one writes 
 

Lx
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uFdx
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1
                  (8.6.5) 

 
First, substituting in the exact solution leads to  
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According to the principle, any other displacement solution (which satisfies the 
displacement boundary condition 0)0( u ) will lead to a greater potential energy  . 
 
Suppose now that the solution was unknown.  In that case an estimate of the solution can 
be made in terms of some unknown parameter(s), substituted into Eqn. 8.6.5, and then 
minimised to find the parameters.  This procedure is known as the Rayleigh Ritz 
method.  For example, let the guess, or trial function, be the linear function xu   .  
The boundary condition leads to 0 .  Substituting xu   into Eqn. 8.6.5 leads to  
 

LFLEALFdxLxEA
L

   2
0

0

2
0 4

3
)/1(

2

1
     (8.6.7) 

 
The principle states that   0/   dd , so that  
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The exact and approximate Ritz solution are plotted in Fig. 8.6.3. 
 

 
 

Figure 8.6.3: exact and (Ritz) approximate solution for axial problem 
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The total potential energy due to this approximate solution 03/2 EAFx  is, from Eqn. 

8.6.5,  
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LF
                                             (8.6.9) 

 
which is indeed greater than the minimum value Eqn. 8.6.6 ( 0

2 /347.0 EALF ). 

■ 
 
The accuracy of the solution 8.6.9 can be improved by using as the trial function a 
quadratic instead of a linear one, say 2xxu   .  Again the boundary condition 

leads to 0 .  Then 2xxu    and there are now two unknowns to determine.  Since 
  is a function of two variables,  
 

  0, 







 





                  (8.6.10) 

 
and the two unknowns can be obtained from the two conditions 
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Example 
 
A beam of length L and constant Young’s modulus E and moment of inertia I is supported 
at its ends and subjected to a uniform distributed force per length f.  Let the beam undergo 
deflection )(xv .  The potential energy of the applied loads is 
 

dxxfvV
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 and, with Eqn. 8.5.19, the total potential energy is 
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Choose a quadratic trial function 2xxv   .  The boundary conditions lead to  

)( Lxxv   .  Substituting into 8.6.13 leads to 
 

6/2 32 LfEIL                                      (8.6.14) 
 
With   0/   dd , one finds that 
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which compares with the exact solution 
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■ 
 
 
8.6.3 Problems 
 
1. Consider the statically indeterminate uniaxial problem shown below, two bars joined 

at Lx  , built in at 0x  and Lx 2 , and subjected to a force F at the join.  The 
cross-sectional area of the bar on the left is 2A and that on the right is A.  Use the 
principle of minimum potential energy in conjunction with the Rayleigh-Ritz method 
with a trial displacement function of the form 2xxu    to approximate the 
exact displacement and in particular the displacement at Lx  . 

 

 
 
2. A beam of length L and constant Young’s modulus E and moment of inertia I is 

supported at its ends and subjected to a uniform distributed force per length f and a 
concentrated force P at its centre.  Use the principle of minimum potential energy in 
conjunction with the Rayleigh-Ritz method with a trial deflection  Lxv /sin  , to 
approximate the exact deflection. 

 
3. Use the principle of minimum potential energy in conjunction with the Rayleigh-Ritz 

method with a trial solution xu   to approximately solve the problem of axial 
deformation of an elastic rod of varying cross section, built in at one end and loaded 
by a uniform distributed force/length f, and a force P at the free end, as shown below.  
The cross sectional are is )/2()( 0 LxAxA   and the length of the rod is L. 

 
 
 
 
 
 
 
 
 
 
 

F

L L

f
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