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8.6 The Principle of Minimum Potential Energy 
 
The principle of minimum potential energy follows directly from the principle of 
virtual work (for elastic materials). 
 
 
8.6.1 The Principle of Minimum Potential Energy 
 
Consider again the example given in the last section; in particular re-write Eqn. 8.5.15 as 
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The quantity inside the curly brackets is defined to be the total potential energy of the 
system,  , and the equation states that the variation of   is zero – that this quantity does 
not vary when a virtual displacement is imposed: 
 

0         (8.6.2) 
 
The total potential energy as a function of displacement u is sketched in Fig. 8.6.1.  With 
reference to the figure, Eqn. 8.6.2 can be interpreted as follows: the total potential energy 
attains a stationary value (maximum or minimum) at the actual displacement ( 1u ); for 

example, 0  for an incorrect displacement 2u .  Thus the solution for displacement 
can be obtained by finding a stationary value of the total potential energy.  Indeed, it can 
be seen that the quantity inside the curly brackets in Fig. 8.6.1 attains a minimum for the 
solution already derived, Eqn. 8.5.17. 
 

 
 

Figure 8.6.1: the total potential energy of a system 
 
To generalise, define the “potential energy” of the applied loads to be extWV    so that 

 
VU         (8.6.3) 

 
The external loads must be conservative, precluding for example any sliding frictional 
loading.  Taking the total potential energy to be a function of displacement u, one has 
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Thus of all possible displacements u satisfying the loading and boundary conditions, the 
actual displacement is that which gives rise to a stationary point 0/  dud  and the 
problem reduces to finding a stationary value of the total potential energy VU  . 
 
Stability 
 
To be precise, Eqn. 8.6.2 only demands that the total potential energy has a stationary 
point, and in that sense it is called the principle of stationary potential energy.  One can 
have a number of stationary points as sketched in Fig. 8.6.2.  The true displacement is one 
of the stationary values 321 ,, uuu . 

 

 
 

Figure 8.6.2: the total potential energy of a system 
 
Consider the system with displacement 2u .  If an external force acts to give the particles 
of the system some small initial velocity and hence kinetic energy, one has K0 .  
The particles will now move and so the displacement 2u  changes.  Since   is a 
minimum there it must increase and so the kinetic energy must decrease, and so the 
particles remain close to the equilibrium position.  For this reason 2u  is defined as a 
stable equilibrium point of the system.  If on the other hand the particles of the body were 
given small initial velocities from an initial displacement 1u  or 3u , the kinetic energy 

would increase dramatically; these points are called unstable equilibrium points.  Only 
the state of stable equilibrium is of interest here and the principle of stationary potential 
energy in this case becomes the principle of minimum potential energy. 
 
 
8.6.2 The Rayleigh-Ritz Method 
 
In applications, the principle of minimum potential energy is used to obtain approximate 
solutions to problems which are otherwise difficult or, more usually, impossible to solve 
exactly.  It forms one basis of the Finite Element Method (FEM), a general technique 
for solving systems of equations which arise in complex mechanics problems. 
 
Example 
 
Consider a uniaxial bar of length L, young’s modulus E and varying cross-section  

)/1(0 LxAA  , fixed at one end and subjected to a force F at the other.  The true 


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solution for displacement to this problem can be shown to be    LxEAFLu /1ln/ 0  .  

To see how this might be approximated using the principle, one writes 
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First, substituting in the exact solution leads to  
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According to the principle, any other displacement solution (which satisfies the 
displacement boundary condition 0)0( u ) will lead to a greater potential energy  . 
 
Suppose now that the solution was unknown.  In that case an estimate of the solution can 
be made in terms of some unknown parameter(s), substituted into Eqn. 8.6.5, and then 
minimised to find the parameters.  This procedure is known as the Rayleigh Ritz 
method.  For example, let the guess, or trial function, be the linear function xu   .  
The boundary condition leads to 0 .  Substituting xu   into Eqn. 8.6.5 leads to  
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The principle states that   0/   dd , so that  
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The exact and approximate Ritz solution are plotted in Fig. 8.6.3. 
 

 
 

Figure 8.6.3: exact and (Ritz) approximate solution for axial problem 
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The total potential energy due to this approximate solution 03/2 EAFx  is, from Eqn. 

8.6.5,  
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which is indeed greater than the minimum value Eqn. 8.6.6 ( 0

2 /347.0 EALF ). 

■ 
 
The accuracy of the solution 8.6.9 can be improved by using as the trial function a 
quadratic instead of a linear one, say 2xxu   .  Again the boundary condition 

leads to 0 .  Then 2xxu    and there are now two unknowns to determine.  Since 
  is a function of two variables,  
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and the two unknowns can be obtained from the two conditions 
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Example 
 
A beam of length L and constant Young’s modulus E and moment of inertia I is supported 
at its ends and subjected to a uniform distributed force per length f.  Let the beam undergo 
deflection )(xv .  The potential energy of the applied loads is 
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 and, with Eqn. 8.5.19, the total potential energy is 
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Choose a quadratic trial function 2xxv   .  The boundary conditions lead to  

)( Lxxv   .  Substituting into 8.6.13 leads to 
 

6/2 32 LfEIL                                      (8.6.14) 
 
With   0/   dd , one finds that 
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which compares with the exact solution 
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8.6.3 Problems 
 
1. Consider the statically indeterminate uniaxial problem shown below, two bars joined 

at Lx  , built in at 0x  and Lx 2 , and subjected to a force F at the join.  The 
cross-sectional area of the bar on the left is 2A and that on the right is A.  Use the 
principle of minimum potential energy in conjunction with the Rayleigh-Ritz method 
with a trial displacement function of the form 2xxu    to approximate the 
exact displacement and in particular the displacement at Lx  . 

 

 
 
2. A beam of length L and constant Young’s modulus E and moment of inertia I is 

supported at its ends and subjected to a uniform distributed force per length f and a 
concentrated force P at its centre.  Use the principle of minimum potential energy in 
conjunction with the Rayleigh-Ritz method with a trial deflection  Lxv /sin  , to 
approximate the exact deflection. 

 
3. Use the principle of minimum potential energy in conjunction with the Rayleigh-Ritz 

method with a trial solution xu   to approximately solve the problem of axial 
deformation of an elastic rod of varying cross section, built in at one end and loaded 
by a uniform distributed force/length f, and a force P at the free end, as shown below.  
The cross sectional are is )/2()( 0 LxAxA   and the length of the rod is L. 
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