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8.1 Energy in Deforming Materials 
 
There are many different types of energy: mechanical, chemical, nuclear, electrical, 
magnetic, etc.  Energies can be grouped into kinetic energies (which are due to 
movement) and potential energies (which are stored energies – energy that a piece of 
matter has because of its position or because of the arrangement of its parts). 
 
A rubber ball held at some height above the ground has (gravitational) potential energy.  
When dropped, this energy is progressively converted into kinetic energy as the ball’s 
speed increases until it reaches the ground where all its energy is kinetic.  When the ball 
hits the ground it begins to deform elastically and, in so doing, the kinetic energy is 
progressively converted into elastic strain energy, which is stored inside the ball.  This 
elastic energy is due to the re-arrangement of molecules in the ball – one can imagine this 
to be very like numerous springs being compressed inside the ball.  The ball reaches 
maximum deformation when the kinetic energy has been completely converted into strain 
energy.  The strain energy is then converted back into kinetic energy, “pushing” the ball 
back up for the rebound. 
 
Elastic strain energy is a potential energy – elastically deforming a material is in many 
ways similar to raising a weight off the ground; in both cases the potential energy is 
increased. 
 
Similarly, work is done in stretching a rubber band.  This work is converted into elastic 
strain energy within the rubber.  If the applied stretching force is then slowly reduced, the 
rubber band will use this energy to “pull” back.  If the rubber band is stretched and then 
released suddenly, the band will retract quickly; the strain energy in this case is converted 
into kinetic energy – and sound energy (the “snap”). 
 
When a small weight is placed on a large metal slab, the slab will undergo minute strains, 
too small to be noticed visually.  Nevertheless, the metal behaves like the rubber ball and 
when the weight is removed the slab uses the internally stored strain energy to return to 
its initial state.  On the other hand, a metal bar which is bent considerably, and then laid 
upon the ground, will not nearly recover its original un-bent shape.  It has undergone 
permanent deformation.  Most of the energy supplied has been lost; it has been converted 
into heat energy, which results in a very slight temperature rise in the bar.  Permanent 
deformations of this type are accounted for by plasticity theory, which is treated in 
Chapter 11. 
 
In any real material undergoing deformation, at least some of the supplied energy will be 
converted into heat.  However, with the ideal elastic material under study in this chapter, 
it is assumed that all the energy supplied is converted into strain energy.  When the loads 
are removed, the material returns to its precise initial shape and there is no energy loss; 
for example, a purely elastic ball dropped onto a purely elastic surface would bounce 
back up to the precise height from which it was released. 
 
As a prelude to a discussion of the energy of elastic materials, some important concepts 
from elementary particle mechanics are reviewed in the following sections.  It is shown 
that Newton’s second law, the principle of work and kinetic energy and the principle 
of conservation of mechanical energy are equivalent statements; each can be derived 
from the other.  These concepts are then used to study the energetics of elastic materials. 
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8.1.1 Work and Energy in Particle Mechanics 
 
Work 
 
Consider a force F which acts on a particle, causing it to move through a displacement s, 
the directions in which they act being represented by the arrows in Fig. 8.1.1a.  The work 
W done by F is defined to be cosFs  where   is the angle formed by positioning the 
start of the F and s arrows at the same location with 1800   .  Work can be positive 
or negative: when the force and displacement are in the same direction, then 900    
and the work done is positive; when the force and displacement are in opposite directions, 
then 18090    and the work done is negative. 
 

 
 
Figure 8.1.1: (a)  force acting on a particle, which moves through a displacement s; 

(b) a varying force moving a particle along a path 
 
Consider next a particle moving along a certain path between the points 21 , pp  by the 
action of some force F, Fig. 8.1.1b.  The work done is 
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where s  is the displacement.  For motion along a straight line, so that 0 , the work is 

dsFW
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; if F here is constant then the work is simply F times the distance between 

1p  to 2p  but, in most applications, the force will vary and an integral needs to be 
evaluated. 
 
Conservative Forces 
 
From Eqn. 8.1.1, the work done by a force in moving a particle through a displacement 
will in general depend on the path taken.  There are many important practical cases, 
however, when the work is independent of the path taken, and simply depends on the 
initial and final positions, for example the work done in deforming elastic materials (see 
later) – these lead to the notion of a conservative (or potential) force.  Looking at the 
one-dimensional case, a conservative force conF  is one which can always be written as the 

derivative of a function U (the minus sign will become clearer in what follows), 
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since, in that case, 
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In this context, the function U is called the potential energy and U  is the change in 
potential energy of the particle as it moves from 1p  to 2p .  If the particle is moved from 

1p  to 2p  and then back to 1p , the net work done is zero and the potential energy U of the 
particle is that with which it started. 
 
Potential Energy 
 
The potential energy of a particle/system can be defined as follows: 
 
Potential Energy: 
the work done in moving a system from some standard configuration to the current 
configuration 
 
Potential energy has the following characteristics: 
(1) The existence of a force field 
(2) To move something in the force field, work must be done 
(3) The force field is conservative 
(4) There is some reference configuration 
(5) The force field itself does negative work when another force is moving something 

against it 
(6) It is recoverable energy 
 
These six features are evident in the following example: a body attached to the coil of a 
spring is extended slowly by a force F, overcoming the spring (restoring) force sprF  (so 

that there are no accelerations and sprFF   at all times), Fig. 8.1.2. 

 

 
 

Figure 8.1.2: a force extending an elastic spring 
 
Let the initial position of the block be 0x  (relative to the reference configuration, 0x ).  

Assuming the force to be proportional to deflection, kxF  , the work done by F in 
extending the spring to a distance x is 
 

sprF Fx
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This is the work done to move something in the elastic spring “force field” and by 
definition is the potential energy (change in the body).  The energy supplied in moving 
the body is said to be recoverable because the spring is ready to pull back and do the 
same amount of work.  
 
The corresponding work done by the conservative spring force sprF  is 
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This work can be seen from the area of the triangles in Fig. 8.1.3: the spring force is zero 
at the equilibrium/reference position ( 0x ) and increases linearly as x increases. 
 

 
 

Figure 8.1.3: force-extension curve for a spring 
■ 

 
The forces in this example depend on the amount by which the spring is stretched.  This is 
similar to the potential energy stored in materials – the potential force will depend in 
some way on the separation between material particles (see below). 
 
Also, from the example, it can be seen that an alternative definition for the potential 
energy U of a system is the negative of the work done by a conservative force in moving 
the system from some standard configuration to the current configuration. 
 
In general then, the work done by a conservative force is related to the potential energy 
through 
 

UWcon              (8.1.6) 

 
Dissipative (Non-Conservative) Forces 
 
When the forces are not conservative, that is, they are dissipative, one cannot find a 
universal function U such that the work done is the difference between the values of U at 
the beginning and end points – one has to consider the path taken by the particle and the 
work done will be different in each case.  A general feature of non-conservative forces is 
that if one moves a particle and then returns it to its original position the net work done 
will not be zero.  For example, consider a block being dragged across a rough surface, 
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Fig. 8.1.4.  In this case, if the block slides over and back a number of times, the work 
done by the pulling force F keeps increasing, and the work done is not simply determined 
by the final position of the block, but by its complete path history.  The energy used up in 
moving the block is dissipated as heat (the energy is irrecoverable). 
 

 
 

Figure 8.1.4: Dragging a block over a frictional surface 
 
 
8.1.2 The Principle of Work and Kinetic Energy 
 
In general, a mechanics problem can be solved using either Newton’s second law or the 
principle of work and energy (which is discussed here).  These are two different equations 
which basically say the same thing, but one might be preferable to the other depending on 
the problem under consideration.  Whereas Newton’s second law deals with forces, the 
work-energy principle casts problems in terms of energy. 
 
The kinetic energy of a particle of mass m and velocity v is defined to be 2

2
1 mvK  .  The 

rate of change of kinetic energy is, using Newton’s second law maF  , 
 

Fvvma
dt

dv
mvmv

dt

d
K 






 )(

2

1 2           (8.1.7) 

 
The change in kinetic energy over a time interval ),( 10 tt  is then 
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where K0 and K1 are the initial and final kinetic energies.  The work done over this time 
interval is 
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and it follows that 
 

KW        Work – Energy Principle     (8.1.10) 
 
One has the following: 
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The principle of work and kinetic energy: 
the total work done by the external forces acting on a particle equals the change in kinetic 
energy of the particle 
 
It is not a new principle of mechanics, rather a rearrangement of Newton’s second law of 
motion (or one could have started with this principle, and derived Newton’s second law). 
 
The following example shows how the principle holds for conservative, dissipative and 
applied forces. 
 
Example 
 
A block of mass m is attached to a spring and dragged along a rough surface.  It is 
dragged from left to right, Fig. 8.1.5.  Three forces act on the block, the applied force aplF  

(taken to be constant), the spring force sprF  and the friction force friF  (assumed constant). 

 

 
 

Figure 8.1.5: a block attached to a spring and dragged along a rough surface 
 
Newton’s second law, with kxFspr  , leads to a standard non-homogeneous second order 

linear ordinary differential equation with constant coefficients: 
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Taking the initial position of the block to be 0x  and the initial velocity to be 0x , the 

solution can be found to be 
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where mk / .  The total work done W is the sum of the work done by the applied 
force aplW , the work done by the spring force sprW  and that done by the friction force 

friW : 

 

     0
2
0

2
0 2

1
xxFxxkxxFWWWW friaplfrisprapl            (8.1.13) 

 
The change in kinetic energy of the block is 
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Substituting Eqn. 8.1.12 into 8.1.13-14 and carrying out the algebra, one indeed finds that 

KW  : 
 

KWWWW frisprapl                                     (8.1.15) 

 
Now the work done by the spring force is equivalent to the negative of the potential 
energy change, so the work-energy equation (8.1.15) can be written in the alternative 
form1 
 

KUWW sprfriapl                                       (8.1.16) 

 
The friction force is dissipative – it leads to energy loss.  In fact, the work done by the 
friction force is converted into heat which manifests itself as a temperature change in the 
block.  Denoting this energy loss by (see Eqn. 8.1.13) )( 0xxFH frifri  , one has 

 
KUHW sprfriapl                                       (8.1.17) 

 
■ 

 
 
8.1.3 The Principle of Conservation of Mechanical Energy 
 
In what follows, it is assumed that there is no energy loss, so that no dissipative forces 
act.  Define the total mechanical energy of a body to be the sum of the kinetic and 
potential energies of the body.  The work-energy principle can then be expressed in two 
different ways, for this special case: 
 
1. The total work done by the external forces acting on a body equals the change in 

kinetic energy of the body: 
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2. The total work done by the external forces acting on a body, exclusive of the 

conservative forces, equals the change in the total mechanical energy of the body 
 

KUW apl               (8.1.19) 

 
The special case where there are no external forces, or where all the external forces are 
conservative/potential, leads to KU 0 , so that the mechanical energy is constant.  
This situation occurs, for example, for a body in free-fall {▲Problem 3} and for a freely 
oscillating spring {▲Problem 4}.  Both forms of the work-energy principle can also be 
seen to apply for a spring subjected to an external force {▲Problem 5}. 

                                                 
1 it is conventional to keep work terms on the left and energy terms on the right 
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The Principle of Conservation of Mechanical Energy 
 
The principle of conservation of energy states that the total energy of a system remains 
constant – energy cannot be created or destroyed, it can only be changed from one form 
of energy to another. 
  
The principle of conservation of energy in the case where there is no energy dissipation is 
called the principle of conservation of mechanical energy and states that, if a system is 
subject only to conservative forces, its mechanical energy remains constant; any system 
in which non-conservative forces act will inevitable involve non-mechanical energy (heat 
transfer). 
  
So, when there are only conservative forces acting, one has 
 

KU 0            (8.1.20) 
 
or, equivalently, 
 

iiff UKUK      (8.1.21) 

 
where fi KK ,  are the initial and final kinetic energies and fi UU ,  are the initial and final 

potential energies. 
 
Note that the principle of mechanical energy conservation is not a new separate law of 
mechanics, it is merely a re-expression of the work-energy principle (or of Newton’s 
second law). 
 
 
8.1.4 Deforming Materials 
 
The discussion above which concerned particle mechanics is now generalized to that of a 
deforming material. 
 
Any material consists of many molecules and particles, all interacting in some complex 
way.  There will be a complex system of internal forces acting between the molecules, 
even when the material is in a natural (undeformed) equilibrium state.  If external forces 
are applied, the material will deform and the molecules will move, and hence not only 
will work be done by the external forces, but work will be done by the internal forces.  
The work-energy principle in this case states that the total work done by the external and 
internal forces equals the change in kinetic energy, 
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In the special case where no external forces act on the system, one has 
 

KW int            (8.1.23) 
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which is a situation known as free vibration.  The case where the kinetic energy is 
unchanging is 
 

0intext WW                                                (8.1.24) 

 
and this situation is known as quasi-static (the quantities here can still depend on time). 
 
The force interaction between the molecules can be grouped into: 

(1) conservative internal force systems 
(2) non-conservative internal force systems (or at least partly non-conservative) 

 
Conservative Internal Forces 
 
First, assuming a conservative internal force system, one can imagine that the molecules 
interact with each other in the manner of elastic springs.  Suppose one could apply an 
external force to pull two of these molecules apart, as shown in Fig. 8.1.6. 
 

 
 

Figure 8.1.6: external force pulling two molecules/particles apart 
 
In this ideal situation one can say that the work done by the external forces equals the 
change in potential energy plus the change in kinetic energy, 
 

KUW ext                         (8.1.25) 

 
The energy U in this case of deforming materials is called  the elastic strain energy, the 
energy due to the molecular arrangement relative to some equilibrium position. 
 
The free vibration case is now KU 0  and the quasi-static situation is UW ext . 

 
Non-Conservative Internal Forces 
 
Consider now another example of internal forces acting within materials, that of a 
polymer with long-chain molecules.  If one could somehow apply an external force to a 
pair of these molecules, as shown in Fig. 8.1.7, the molecules would slide over each 
other.  Frictional forces would act between the molecules, very much like the frictional 
force between the block and rough surface of Fig. 8.1.4.  This is called internal friction.  
Assuming that the internal forces are dissipative, the external work cannot be written in 
terms of a potential energy, KUW ext , since the work done depends on the path 

taken.  One would have to calculate the work done by evaluating an integral. 
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Figure 8.1.7: external force pulling two molecules/particles apart 
 
Similar to Eqn. 8.1.17, however, the energy balance can be written as 
 

UKHW ext                 (8.1.26) 

 
where H is the energy dissipated during the deformation and will depend on the precise 
deformation process.  This energy is dissipated through heat transfer and is conducted 
away through the material. 
 
 
8.1.5 Energy Methods 
 
The work-energy principle provides a method for obtaining solutions to conservative 
static problems and will be pursued in the next section.  The principle is one of a number 
of tools which can be grouped under the heading Energy Methods, such as Castigliano’s 
theorems and the Crotti-Engesser theorem (see later).  These methods can be used to 
solve a wide range of problems involving elastic (linear or non-linear) materials. 
 
Virtual work methods are closely related to energy methods and provide powerful means 
for solving problems whether they involve elastic materials or not; for the case of elastic 
materials, they lead naturally to the principle of minimum potential energy discussed in a 
later section.  These virtual work methods will be discussed in sections 8.5-8.6. 
 
 
8.1.6 Problems 
 
1. Consider the conservative force field  

24

11

xx
F   

What is the potential energy of a particle at some position 1xx   (define the point at 
infinity to be the reference point)?  What work is done by F as the particle moves 
from the reference point to 1xx  ?  What is the work done by the applied force which 

moves the particle from the reference point to 1xx  ? 
 
2. Consider the gravitational force field mg .  Consider a body acted upon by its weight 

mgw   and by an equal and opposite upward force F (arising, for instance, in a 
string).  Suppose the weight to be moved at slow speed from one position to another 
one (so that there is no acceleration and wF  ).  Calculate the work done by F and 
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external 
force 
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show that it is independent of the path taken.  What is the potential energy of the 
body?  What is the work done by the gravitational force? 

 
3. Show that both forms of the work-energy principle, Eqns. 8.1.18, 8.1.19, hold for a 

body in free-fall and that the total mechanical energy is constant.  (Use Newton’s 
second law with x positive up, initial height h and zero initial velocity.) 

 
4. Consider a mass m attached to a freely oscillating spring, at initial position 0x  and 

with initial velocity 0x .  Use Newton’s second law to show that 
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where mk / .  Show that both forms of the work-energy principle, Eqns. 8.1.18, 
8.1.19, hold for the mass and that the total mechanical energy is constant. 

 
5. Consider the case of an oscillating mass m attached to a spring with a constant force F 

applied to the mass.  From Newton’s second law, one has Fkxxm   which can be 
solved to obtain 
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Evaluate the change in kinetic energy and the total work done by the applied force to 
show that KW  .  Show also that the total work done by the applied force, 
exclusive of the conservative spring force, is equivalent to KU  . 

 
6. Consider a body dragged a distance s along a rough horizontal surface by a force F, 

Fig. 8.1.4.  By Newton’s second law, xmFF fr  .  By directly integrating this 

equation twice and letting the initial position and velocity of the body be 0x  and 0x  

respectively, show that the work done and the change in kinetic energy of the block 
are both given by  
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so that the principle of work and kinetic energy holds.  How much energy is 
dissipated? 

 


