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7 Applications of 
Elasticity 

 
 
The linear elastic model was introduced in the previous chapter and some elementary 
problems involving elastic materials were solved there (in particular in section 6.2).  In 
this Chapter, five important, practical, theories are presented concerning elastic materials; 
they all have specific geometries and are subjected to particular types of load.  In §7.1, 
the geometry is that of a long slender bar and the load is one which acts along the length 
of the bar; in §7.2, the geometry is that of a long slender circular bar and the load is one 
which twists the bar; in §7.3 the geometry is that of a thin-walled cylindrical or spherical 
component, and the load is normal to these walls; in §7.4 the geometry is that of a long 
and slender beam, and the load is transverse to the beam length.  Finally, in §7.5, the 
geometry is a column, fixed at one end and loaded at the other so that it deflects.  These 
five particular situations allow for simplifications (or approximations) to be made to the 
full three-dimensional linear elastic stress-strain relations; this allows one to write down 
simple expressions for the stress and strain and so solve some important practical 
problems analytically. 
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7.1 One Dimensional Axial Deformations 
 
In this section, a specific simple geometry is considered, that of a long and thin straight 
component loaded in such a way that it deforms in the axial direction only.  The x-axis is 
taken as the longitudinal axis, with the cross-section lying in the yx   plane, Fig. 7.1.1. 
 

 
 

Figure 7.1.1: A slender straight component; (a) longitudinal axis, (b) cross-section 
 
 
7.1.1 Basic relations for Axial Deformations 
 
Any static analysis of a structural component involves the following three considerations: 

(1) constitutive response 
(2) kinematics 
(3) equilibrium 

 
In this Chapter, it is taken for (1) that the material responds as an isotropic linear elastic 
solid.  It is assumed that the only significant stresses and strains occur in the axial 
direction, and so the stress-strain relations 6.1.8-9 reduce to the one-dimensional equation 

xxxx E   or, dropping the subscripts, 

 
 E          (7.1.1) 

 
Kinematics (2), the study of deformation, was the subject of Chapter 4.  In the theory 
developed here, known as axial deformation, it is assumed that the axis of the 
component remains straight and that cross-sections that are initially perpendicular to the 
axis remain perpendicular after deformation.  This implies that, although the strain might 
vary along the axis, it remains constant over any cross section.  The axial strain occurring 
over any section is defined by Eqn. 4.1.2, 
 

0

0

L

LL 
            (7.1.2) 

 
This is illustrated in Fig. 7.1.2, which shows a (shaded) region undergoing a compressive 
(negative) strain. 
 
Recall that individual particles/points undergo displacements whereas regions/line-
elements undergo strain.  In Fig. 7.1.2, the particle originally at A has undergone a 
displacement )(Au  whereas the particle originally at B has undergone a displacement 

)(Bu .  From Fig. 7.1.2, another way of expressing the strain in the shaded region is (see 
Eqn. 4.1.3) 
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0

)()(

L

AuBu 
     (7.1.3) 

 

 
 

Figure 7.1.2: axial strain; (a) before deformation, (b) after deformation 
 
Both displacements )(Au  and )(Bu  of Fig. 7.1.2 are positive, since the particles displace 
in the positive x direction – if they moved to the left, for consistency, one would say they 
underwent negative displacements.  Further, positive stresses are as shown in Fig. 7.1.3a 
and negative stresses are as shown in Fig. 7.1.3b.  From Eqn. 7.1.1, a positive stress 
implies a positive strain (lengthening) and a compressive stress implies a negative strain 
(contracting) 
 

 
 
Figure 7.1.3: Stresses arising in the slender component; (a) positive (tensile) stress, 

(b) negative (compressive) stress 
 
Equilibrium, (3), will be considered in the individual examples below. 
 
Note that, in the previous Chapter, problems were solved using only the stress-strain law 
(1).  Kinematics (2) and equilibrium (3) were not considered, the reason being the 
problems were so simple, with uniform (homogeneous) stress and strain (as indeed also in 
the first example which follows).  Whenever more complex problems are encountered, 
with non-uniform stress and strains, (3) and perhaps (2) need to be considered to solve for 
the stress and strain. 
 
 
7.1.2 Structures with Uniform Members 
 
A uniform axial member is one with cross-section A and modulus E constant along its 
length, and loaded with axial forces at its ends only. 
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Example 
 
Consider the bar of initial length L shown in Fig. 7.1.4, subjected to equal and opposite 
end-forces F.  The free-body (equilibrium) diagram of a section of the bar shown in Fig. 
7.1.4b shows that the internal force is also F everywhere along the bar.  The stress is thus 
everywhere AF /  and the strain is everywhere 
 

EA

F
      (7.1.4) 

 
and, from Eq. 7.1.2, the bar extends in length by an amount 
 

EA

FL
                                                           (7.1.5) 

 
Note that, although the force acting on the left-hand end is negative (acting in the x  
direction), the stress there is positive (see Fig. 7.1.3). 
 

 
 
Figure 7.1.4: A uniform axial member; (a) subjected to axial forces F, (b) free-body 

diagram 
 
Displacements need to be calculated relative to some datum displacement1.  For example, 
suppose that the displacement at the centre of the bar is zero, 0)( Bu , Fig. 7.1.4.  Then, 
from Eqn. 7.1.3, 
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        (7.1.6) 
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1 which is another way of saying that one can translate the bar left or right as a rigid body without affecting 
the stress or strain – but it does affect the displacements 
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Example 
 
Consider the two-element structure shown in Fig. 7.1.5.  The first element is built-in to a 
wall at end A, is of length 1L , cross-sectional area 1A  and Young’s modulus 1E .  The 

second element is attached at B and has properties 222 ,, EAL .  External loads F  and P 
are applied at B and C as shown.  An unknown reaction force R acts at the wall, at A.  
This can be determined from the force equilibrium equation for the complete structure: 
 

0 PFR                             (7.1.7) 
 
Note that, as is usual, the reaction is assumed to act in the positive (x) direction.  With R 
known, the stress )1(  in the first element can be evaluated using the free-body diagram 
7.1.5b, and (2)  using Fig. 7.1.5c: 
 

2

)2(

1

)1( ,
A

P

A
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


                      (7.1.8) 

 
and so the strain is 
 

22

)2(

11

)1( ,
AE

P

AE

FP



        (7.1.9) 

 
Note that the stress and strain are discontinuous at B 2. 
 

 
 

Figure 7.1.5: A two-element structure (a) subjected to axial forces F and P, (b,c) 
free-body diagrams 

 
For each element, the total elongations i  are 

 

                                                 
2 this result, which can be viewed as a violation of equilibrium at B, is a result of the one-dimensional 
approximation of what is really a two-dimensional problem 
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     (7.1.10) 

 
If FP  , then 01   as expected, with 0R  and 0 . 
 
Thus far, the stress and strain (and elongations) have been obtained.  If one wants to 
evaluate the displacements, then one needs to ensure that the strains in each of the two 
elements are compatible, that is, that the elements fit together after deformation just like 
they did before deformation.  In this example, the displacements at B and C are 
  

21 )()(,)()(  BuCuAuBu                                (7.1.11) 
 
A compatibility condition, bringing together the separate relations in 7.1.11, is then 
 

 
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1)()(
AE
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AE

LFP
AuCu 


          (7.1.12) 

 
ensuring that )(Bu  is unique.  As in the previous example, the displacements can now be 
calculated if the displacement at any one (datum) point is known.  Indeed, it is known that 

0)( Au . 
■ 

 
 
Example 
 
Consider next the similar situation shown in Fig. 7.1.6.  Here, both ends of the two-
element structure are built-in and there is only one applied force, F, at B.  There are now 
two reaction forces, at ends A and C, but there is only one equilibrium equation to 
determine them: 
 

0 CA RFR                    (7.1.13) 

 
Any structure for which there are more unknowns than equations of equilibrium, so that 
the stresses cannot be determined without considering the deformation of the structure, is 
called a statically indeterminate structure3. 
 

                                                 
3 See the end of §2.3.3 
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Figure 7.1.6: A two-element structure built-in and both ends; (a) subjected to an 
axial force F, (b,c) free-body diagrams 

 
 
In terms of the unknown reactions, the strains are 
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    (7.1.14) 

 
and, for each element, the total elongations are 
 

22

2
2

11

1
1 ,

AE
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AE

LR CA                (7.1.15) 

 
Finally, compatibility of both elements implies that the total elongation 021  .  
Using this relation with Eqn. 7.1.13-14 then gives 
 

112221

221

112221

112 ,
AELAEL

AEL
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

      (7.1.16) 

 
The displacements can now be evaluated, for example, 
 

222111 //

1
)(

LAELAE
FBu


      (7.1.17) 

 
so that a positive F displaces B to the right and a negative F displaces B to the left. 

■ 
 
Note the general solution procedure in this last example, known as the basic force 
method: 
 

Equilibrium + Compatibility of Strain in terms of unknown Forces  
 Solve equations for unknown Forces 
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The Stiffness Method 
 
The stiffness method (also known as the displacement method) is a slight modification 
of the above solution procedure, where the final equations to be solved involve known 
forces and unknown displacements only: 
 

Equilibrium in terms of Displacement 
 Solve equations for unknown Displacements 

 
If one deals in displacements, one does not need to ensure compatibility (it will 
automatically be satisfied); compatibility only needs to be considered when dealing in 
strains (as in the previous example)4. 
 
Example (The Stiffness Method) 
 
Consider a series of three bars of cross-sectional areas 321 ,, AAA , Young’s moduli 

321 ,, EEE  and lengths 321 ,, LLL , Fig. 7.1.7.  The first and third bars are built-in at points 

A and D, bars one and two meet at B and bars two and three meet at C.  Forces BP  and CP  

act at B and C respectively. 
 
The force is constant in each bar, and for each bar there is a relation between the force iF , 

and elongation, i , Eqn. 7.1.5: 

 

iii kF      where     
i

ii
i L

EA
k                (7.1.18) 

 
Here, ik  is the effective stiffness of each bar.  The elongations are related to the 

displacements, AB uu 1  etc., so that, with 0 DA uu , 
 

  CBCB ukFuukFukF 332211 ,,               (7.1.19) 

 
There are two degrees of freedom in this problem, that is, two nodes are free to move.  
One therefore needs two equilibrium equations.  One could use any two of 
 

0,0,0 322131  FPFFPFFPPF CBCB         (7.1.20) 

 
In the stiffness method, one uses the second and third of these; the second is the “node B” 
equation and the third is the “node C” equation.  Substituting Eqns. 7.1.19 into 7.1.20 
leads to the system of two equations  
 

 
  CCB

BCB
Pukkuk
Pukukk



322

221     (7.1.21) 

                                                 
4 the reason is: if you know the displacements, you know where every particle is and you know the strains 
and everything else; if you only know the strains, you know the change in displacement, but you do not 
know the actual displacements. You need some extra information to know the displacements – this is the 
compatibility equation 
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which can be solved for the two unknown nodal displacements. 
 

 
 

Figure 7.1.7: three bars in series; (a) subjected to external loads, (b,c,d) free-body 
diagrams 

 
Equations 7.1.21 can also be written in the matrix form 
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 
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k k k u P

k k k u P

       
           

         (7.1.22) 

 
Note that it was not necessary to evaluate the reactions to obtain a solution.  Once the 
forces have been found, the reactions can be found using the free-body diagram of Fig. 
7.1.7d. 
 
The stiffness method is a very systematic procedure.  It can be used to solve for structures 
with many elements, with the two equations 7.1.21, 7.1.22, replaced by a large system of 
equations which can be solved numerically using a computer. 
 
 
7.1.3 Structures with Non-uniform Members 
 
Consider the structure shown in Fig. 7.1.8, an axial bar consisting of two separate 
components bonded together.  The components have Young’s moduli 21 , EE  and cross-

sectional areas 21 , AA .  The bar is subjected to equal and opposite forces F as shown, in 
such a way that axial deformations occur, that is, the cross-sections remain perpendicular 
to the x axis throughout the deformation. 
 
Since there are only axial deformations, the strain is constant over a cross-section.  
However, the stress is not uniform, with  11 E  and  22 E ; on any cross-section, 
the stress is higher in the stiffer component.  The resultant force acting on each 
component is 111 AEF   and 222 AEF  .  Since FFF  21 , the total elongation is 
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2211 AEAE

FL


                (7.1.23) 

 

 
 

Figure 7.1.8: A bar consisting of two separate materials bonded together 
 
 
7.1.4 Resultant Force and Moment 
 
Consider the force and moments acting over any cross-section, Fig. 7.1.9.  The resultant 
force is the integral of the stress times elemental area over the cross section, Eqn. 3.1.2, 
 

dAF
A
                                           (7.1.24) 

 
There are two moments; the moment yM  about the y axis and zM  about the z axis, 

 

dAyMdAzM
A

z

A

y    ,             (7.1.25) 

 
Positive moments are defined through the right hand rule, i.e. with the thumb of the 
right hand pointing in the positive y direction, the closing of the fingers indicates the 
positive yM ; the negative sign in Eqn. 7.1.25b is due to the fact that a positive stress with 

0y  would lead to a negative moment zM . 
 
 

 
 

Figure 7.1.9: Resultants on a cross-section; (a) resultant force, (b) resultant 
moments 

 
Consider now the case where the stress is constant over a cross-section.  (Since it is 
assumed that the strain is constant over the cross-section, from Eqn. 7.1.1 this will occur 
when the Young’s modulus is constant.)  In that case, Eqns. 7.1.24-25 can be re-written 
as 
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dAyMdAzMAF
A

z

A

y    ,,                  (7.1.25) 

 

The quantities dAz
A  and dAy

A  are the first moments of area about, respectively, 

the y and z axes.  These are equal to Az  and Ay , where ),( zy  are the coordinates of 
the centroid of the section (see Eqn. 3.2.2).  Taking the x axis to run through the 
centroid, 0 zy , which results in 0 zy MM .  Thus, a resultant axial force 

which acts through the centroid of the cross-section ensures that there is no 
moment/rotation of that cross-section, the main assumption of this section. 
 
For the non-uniform member of Fig. 7.1.8, since the resultant of a constant stress over an 
area is a force acting through the centroid of that area, the forces 21 , FF  act through the 

centroids of the respective areas 21 , AA .  The precise location of the total resultant force F 

can be determined by taking the moments of the forces 21 , FF  about the y and z axes, and 
equating this to the moment of the force F about these axes.  
 
 
7.1.5 Problems 
 
1. Consider the rigid beam supported by two deformable bars shown below.  The bars 

have properties 11, AL  and 2 2,L A  and have the same Young’s modulus E.  They are 

separated by a distance L.  The beam supports an arbitrary load at position x, as 
shown.  What is x if the beam is to remain horizontal after deformation. 

 

 x
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7.2 Torsion 
 
In this section, the geometry to be considered is that of a long slender circular bar and the 
load is one which twists the bar.  Such problems are important in the analysis of twisting 
components, for example lug wrenches and transmission shafts. 
 
 
7.2.1 Basic relations for Torsion of Circular Members 
 
The theory of torsion presented here concerns torques1 which twist the members but 
which do not induce any warping, that is, cross sections which are perpendicular to the 
axis of the member remain so after twisting.  Further, radial lines remain straight and 
radial as the cross-section rotates – they merely rotate with the section. 
 
For example, consider the member shown in Fig. 7.2.1, built-in at one end and subject to 
a torque T at the other.  The x axis is drawn along its axis.  The torque shown is positive, 
following the right-hand rule (see §7.1.4).  The member twists under the action of the 
torque and the radial plane ABCD  moves to DCAB  . 
 

 
 

Figure 7.2.1: A cylindrical member under the action of a torque 
 
Whereas in the last section the measure of deformation was elongation of the axial 
members, here an appropriate measure is the amount by which the member twists, the 
rotation angle  .  The rotation angle will vary along the member – the sign convention is 
that   is positive in the same direction as positive T  as indicated by the arrow in Fig. 
7.2.1.  Further, whereas the measure of strain used in the previous section was the normal 
strain xx , here it will be the engineering shear strain xy  (twice the tensorial shear strain 

xy ).  A relationship between   (dropping the subscripts) and   will next be established. 

 
As the line BC  deforms into CB  , Fig. 7.2.1, it undergoes an angle change  .  As 
defined in §4.1.2, the shear strain   is the change in the original right angle formed by 

BC  and a tangent at B (indicated by the dotted line – this is the y axis to be used in xy ). 

If   is small, then 
 

( )
tan

CC R L

BC L

  


         (7.2.1) 

 

                                                 
1 the term torque is usually used instead of moment in the context of twisting shafts such as those 
considered in this section 
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where L is the length, R the radius of the member and )(L  means the magnitude of 
  at L.  Note that the strain is constant along the length of the member although   is 
not.  Considering a general cross-section within the member, as in Fig. 7.2.2, one has 
 

( )R x

x

                 (7.2.2) 

 

 
 

Figure 7.2.2: A section of a twisting cylindrical member 
 
The shear strain at an arbitrary radial location r, Rr 0 , is 
 

x

xr
r

)(
)(

                             (7.2.3) 

 
showing that the shear strain varies from zero at the centre of the shaft to a 
maximum  xxRLLR /)(/)(    on the outer surface of the shaft. 
 
The only strain is this shear strain and so the only stress which will arise is a shear 
stress  .  From Hooke’s Law  

 
 G          (7.2.4) 

 
where G is the shear modulus (the   of Eqn. 6.1.5). Following the shear strain, the 
shear stress is zero at the centre of the shaft and a maximum on the outer surface. 
 
Considering a free-body diagram of any portion of the shaft of Fig. 7.2.1, a torque T 
acts on all cross-sections.  This torque must equal the resultant of the shear stresses 
acting over the section, as schematically illustrated in Fig. 7.2.3a. 
 
The elemental force acting over an element of area dA  is dA  and so the resultant 
moment about 0r  is 
 

( )
dA

T r r dr                                (7.2.5) 

 
But r/  is a constant and so therefore also is r/  (provided G is) and Eqn. 7.2.5 
can be re-written as 
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2( ) ( )

A

r r J
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  
  

 
               (7.2.6) 

 
The quantity in square brackets is called the polar moment of inertia of the cross-
section (also called the polar second moment of area) and is denoted by J: 
 

dArJ
A
 2  Polar Moment of Area                          (7.2.7) 

 
where dA  is an element of area and the integration is over the complete cross-
section. 
 
For the circular cross-section under consideration, the area element has sides dr  and 
rd , Fig. 7.2.3c, so 

 
2 4 4

3 3
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2
2 32

R R R D
J r drd r dr

             (7.2.8) 

 
where D is the diameter. 
 

 
 

Figure 7.2.3: Shear stresses acting over a cross-section; (a) shear stress, (b,c) 
moment for an elemental area 

 
From Eqn. 7.2.6, the shear stress at any radial location is given by 
 

J

rT
r )(                          (7.2.9) 

 
From Eqn. 7.2.1, 7.2.4, 7.26 and 7.2.9, the angle of twist at the end of the member – or 
the twist at one end relative to that at the other end – is  
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Example 
 
Consider the problem shown in Fig.7.2.4, two torsion members of lengths 21 , LL , 

diameters 21 , dd  and shear moduli 21 ,GG , built-in at A and subjected to torques BT  and 

CT .  Equilibrium of moments can be used to determine the unknown torques acting in 

each member: 
 

0,0 21  CCB TTTTT        (7.2.11) 

 
so that CB TTT 1  and CTT 2 . 

 

 
 
Figure 7.2.4: A structure consisting of two torsion members; (a) subjected to torques 

BT  and CT , (b,c) free-body diagrams 

 
The shear stresses in each member are therefore 
 

 
2

2
1

1 ,
J

rT

J

TTr CCB 


             (7.2.12) 

 
where 32/4

11 dJ   and 32/4
22 dJ  . 

 
From Eqn. 7.2.10, the angle of twist at B is given by 1111 / JGLTB  .  The angle of twist 
at C is then 
 

BC JG

LT
 

22

22             (7.2.13) 

■ 
 
Statically indeterminate problems can be solved using methods analogous to those used in 
the section 7.1 for uniaxial members. 
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Example 
 
Consider the structure in Fig. 7.2.5, similar to that in Fig. 7.2.4 only now both ends are 
built-in and there is only a single applied torque, BT .   
 
 

 
 

Figure 7.2.5: A structure consisting of two torsion members; (a) subjected to a 
Torque BT , (b) free-body diagram, (c) separate elements 

 
Referring to the free-body diagram of Fig. 7.2.5b, there is only one equation of 
equilibrium with which to determine the two unknown member torques: 
 

021  TTT B             (7.2.14) 
 
and so the deformation of the structure needs to be considered.  A systematic way of 
dealing with this situation is to consider each element separately, as in Fig. 7.2.5c.  The 
twist in each element is 
 

22

22
2

11

11
1 ,

JG

LT

JG

LT
                        (7.2.15) 

 
The total twist is zero and so 021   which, with Eqn. 7.2.14, can be solved to obtain 
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         (7.2.16) 

 
The rotation at B can now be determined, 21  B . 

■ 
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7.2.2 Stress Distribution in Torsion Members 
 
The shear stress in Eqn. 7.2.9 is acting over a cross-section of a torsion member.  
From the symmetry of the stress, it follows that shear stresses act also along the 
length of the member, as illustrated to the left of Fig. 7.2.6.  Shear stresses do not act 
on the surface of the element shown, as it is a free surface. 
 
Any element of material not aligned with the axis of the cylinder will undergo a 
complex stress state, as shown to the right of Fig. 7.2.6.  The stresses acting on an 
element are given by the stress transformation equations, Eqns. 3.4.9: 
 

 2cos,2sin,2sin  xyyyxx              (7.2.17) 

 

 
 

Figure 7.2.6: Stress distribution in a torsion member 
 
From Eqns. 3.5.4-5, the maximum normal (principal) stresses arise on planes at o45  
and are  1  and  2 .  Thus the maximum tensile stress in the member occurs at 

o45  to the axis and arises at the surface.  The maximum shear stress is simply  , with 
0 . 

 
 
7.2.3 Problems 
 
1. A shaft of length L and built-in at both ends is subjected to two external torques, T  at 

A and T2  at B, as shown below.  The shaft is of diameter d and shear modulus G.  
Determine the maximum (absolute value of) shear stress in the shaft and determine 
the angle of twist at B. 
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7.3 The Thin-walled Pressure Vessel Theory 
 
An important practical problem is that of a cylindrical or spherical object which is 
subjected to an internal pressure p.  Such a component is called a pressure vessel, Fig. 
7.3.1.  Applications arise in many areas, for example, the study of cellular organisms, 
arteries, aerosol cans, scuba-diving tanks and right up to large-scale industrial containers 
of liquids and gases. 
 
In many applications it is valid to assume that 

(i) the material is isotropic 
(ii) the strains resulting from the pressures are small 
(iii) the wall thickness t of the pressure vessel is much smaller than some 

characteristic radius: ioio rrrrt ,  

 

 
   

Figure 7.3.1: A pressure vessel (cross-sectional view) 
 
Because of (i,ii), the isotropic linear elastic model is used.  Because of (iii), it will be 
assumed that there is negligible variation in the stress field across the thickness of the 
vessel, Fig. 7.3.2. 
 

 
 

Figure 7.3.2: Approximation to the stress arising in a pressure vessel 
 
As a rule of thumb, if the thickness is less than a tenth of the vessel radius, then the actual 
stress will vary by less than about 5% through the thickness, and in these cases the 
constant stress assumption is valid. 
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Note that a pressure izzyyxx p   means that the stress on any plane drawn 

inside the vessel is subjected to a normal stress ip  and zero shear stress (see problem 6 

in section 3.5.7). 
 
 
7.3.1 Thin Walled Spheres 
 
A thin-walled spherical shell is shown in Fig. 7.3.3.  Because of the symmetry of the 
sphere and of the pressure loading, the circumferential (or tangential or hoop) stress t  

at any location and in any tangential orientation must be the same (and there will be zero 
shear stresses). 
 

 
 

Figure 7.3.3: a thin-walled spherical pressure vessel 
 
Considering a free-body diagram of one half of the sphere, Fig. 7.3.4, force equilibrium 
requires that 
 

 2 2 2 0o i t ir r r p         (7.3.1) 

 
and so, with 0 ir r t  ,  

 
2

22
i

t
i

r p

rt t
 


     (7.3.2) 

 

 
 

Figure 7.3.4: a free body diagram of one half of the spherical pressure vessel 
 
One can now take as a characteristic radius the dimension r.  This could be the inner 
radius, the outer radius, or the average of the two – results for all three should be close. 
Setting ir r  and neglecting the small terms 2 2 it rt , 
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t

pr
t 2
    Tangential stress in a thin-walled spherical pressure vessel     (7.3.3) 

 
This tangential stress accounts for the stress in the plane of the surface of the sphere.  The 
stress normal to the walls of the sphere is called the radial stress, r .  The radial stress is 
zero on the outer wall since that is a free surface.  On the inner wall, the normal stress is 

pr  , Fig. 7.3.5.  From Eqn. 7.3.3, since 1/ rt , tp  , and it is reasonable to 

take 0r  not only on the outer wall, but on the inner wall also.  The stress state in the 
spherical wall is then one of plane stress.  
 

 
 

Figure 7.3.5: An element at the surface of a spherical pressure vessel 
 
There are no in-plane shear stresses in the spherical pressure vessel and so the tangential 
and radial stresses are the principal stresses: t  21 , and the minimum principal 

stress is 03  r .  Thus the radial direction is one principal direction, and any two 

perpendicular directions in the plane of the sphere’s wall can be taken as the other two 
principal directions. 
 
Strain in the Thin-walled Sphere 
 
The thin-walled pressure vessel expands when it is internally pressurised.  This results in 
three principal strains, the circumferential strain c  (or tangential strain t ) in two 

perpendicular in-plane directions, and the radial strain r .  Referring to Fig. 7.3.6, these 
strains are 
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From Hooke’s law (Eqns. 6.1.8 with z the radial direction, with 0r ), 
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t

t

t

0 pr0r



Section 7.3 

Solid Mechanics Part I                                                                                Kelly 188

 

 
 

Figure 7.3.6: Strain of an element at the surface of a spherical pressure vessel 
 
To determine the amount by which the vessel expands, consider a circumference at 
average radius r which moves out with a displacement r , Fig. 7.3.7.  From the definition 
of normal strain 
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     (7.3.6) 

 
This is the circumferential strain for points on the mid-radius.  The strain at other points 
in the vessel can be approximated by this value. 
 
The expansion of the sphere is thus 
 

t

pr

E
r cr 2

1 2 
        (7.3.7) 

 

 
 

Figure 7.3.7: Deformation in the thin-walled sphere as it expands 
 
To determine the amount by which the circumference increases in size, consider Fig. 
7.3.8, which shows the original circumference at radius r of length c increase in size by 
an amount c .  One has 
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t

pr

E
rc ccc 2

1
22

2 
       (7.3.8) 

 
It follows from Eqn. 7.3.7-8 that the circumference and radius increases are related 
through 
 

rc  2               (7.3.9) 

 

 
 

Figure 7.3.8: Increase in circumference length as the vessel expands 
 
Note that the circumferential strain is positive, since the circumference is increasing in 
size, but the radial strain is negative since, as the vessel expands, the thickness decreases. 
 
 
7.3.2 Thin Walled Cylinders 
 
The analysis of a thin-walled internally-pressurised cylindrical vessel is similar to that of 
the spherical vessel.  The main difference is that the cylinder has three different principal 
stress values, the circumferential stress, the radial stress, and the longitudinal stress l , 

which acts in the direction of the cylinder axis, Fig. 7.3.9. 
 

 
 

Figure 7.3.9: free body diagram of a cylindrical pressure vessel 
 
Again taking a free-body diagram of the cylinder and carrying out an equilibrium 
analysis, one finds that, as for the spherical vessel, 
 

  
t

pr
l 2
     Longitudinal stress in a thin-walled cylindrical pressure vessel   (7.3.10) 

 
Note that this analysis is only valid at positions sufficiently far away from the cylinder 
ends, where it might be closed in by caps – a more complex stress field would arise there. 
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The circumferential stress can be evaluated from an equilibrium analysis of the free body 
diagram in Fig. 7.3.10: 
 

022  LprtL ic        (7.3.11) 

 
and so 
 

  
t

pr
c     Circumferential stress in a thin-walled cylindrical pressure vessel 

(7.3.12) 
 
 

 
 

Figure 7.3.10: free body diagram of a cylindrical pressure vessel 
 
As with the sphere, the radial stress varies from p  at the inner surface to zero at the 
outer surface, but again is small compared with the other two stresses, and so is taken to 
be 0r . 
 
Strain in the Thin-walled cylinder 
 
The analysis of strain in the cylindrical pressure vessel is very similar to that of the 
spherical vessel.  Eqns. 7.3.6 and 7.3.9 hold also here.  Eqn. 7.3.5 would need to be 
amended to account for the three different principal stresses in the cylinder. 
 
 
7.3.3 External Pressure 
 
The analysis given above can be extended to the case where there is also an external 
pressure acting on the vessel.  The internal pressure is now denoted by ip  and the 

external pressure is denoted by op , Fig. 7.3.11. 

 
 

Figure 7.3.11: A pressure vessel subjected to internal and external pressure 
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In this case, the pressure p in formulae derived above can simply be replaced by 

)( oi pp  , which is known as the gage pressure (see the Appendix to this section, §7.3.5, 

for justification). 
 
 
7.3.4 Problems 
 
 
1. A 20m diameter spherical tank is to be used to store gas.  The shell plating is 10 mm 

thick and the working stress of the material, that is, the maximum stress to which the 
material should be subjected, is 125 MPa.  What is the maximum permissible gas 
pressure? 

 
2. A steel propane tank for a BBQ grill has a 25cm diameter1 and a wall thickness of 

5mm (see figure).  The tank is pressurised to 1.2 MPa. 
(a) determine the longitudinal and circumferential stresses in the cylindrical body of 

the tank 
(b) determine the absolute maximum shear stress in the cylindrical portion of the tank 
(c) determine the tensile force per cm length being supported by a weld joining the 

upper and lower sections of the tank. 
 

 
 
3. What are the strains in the BBQ tank of question 2?  What is the radial displacement? 

[take the steel to be isotropic with  0.3GPa,200  E ] 
 
4. What are the strains in the cylindrical pressure vessel, in terms of E,  , p, t and r? 
 
5. There are no shear stresses in the tangential plane of the spherical pressure vessel.  

However, there are shear stresses acting on planes through the thickness of the wall.  
A cross-section through the thickness is shown below.  Take it that the radial stresses 
are zero.  What are the maximum shear stresses occurring on this cross section? 

 
 
 
6. The three perpendicular planes in the cylindrical pressure vessel are the in-plane, 

through the thickness and longitudinal sections, as shown below.  The non-zero 
(principal) stresses acting on these planes are also shown.  Evaluate the maximum 

                                                 
1 this is an average diameter – the inside is 250-5mm and the outside is 250+5mm 

t t

Weld  
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shear stresses on each of these three planes.  Which of these three maxima is the 
overall maximum shear stress acting in the vessel? 

 

 
 
 
7.3.5 Appendix to §7.3 
 
Equilibrium of a Pressure Vessel with both internal and external pressure 
 
Consider the spherical pressure vessel.  An external pressure op  is distributed around its 

outer surface.  Consider a free-body diagram of one half of the vessel, as shown below. 
 

 
 
The force due to the external pressure acting in the horizontal direction can be evaluated 
using the spherical coordinates shown below. 
 

 
 
An element of surface area upon which the pressure acts, swept out when the angles 
change by d  and d , has sides rd  and dr sin .  The force acting on this area is then 

 ddrpo sin2 .  Force equilibrium in the horizontal (y) direction then leads to 
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7.4 The Elementary Beam Theory 
 
In this section, problems involving long and slender beams are addressed.  As with 
pressure vessels, the geometry of the beam, and the specific type of loading which will be 
considered, allows for approximations to be made to the full three-dimensional linear 
elastic stress-strain relations. 
 
The beam theory is used in the design and analysis of a wide range of structures, from 
buildings to bridges to the load-bearing bones of the human body.  
 
 
7.4.1 The Beam 
 
The term beam has a very specific meaning in engineering mechanics: it is a component 
that is designed to support transverse loads, that is, loads that act perpendicular to the 
longitudinal axis of the beam, Fig. 7.4.1.  The beam supports the load by bending only.  
Other mechanisms, for example twisting of the beam, are not allowed for in this theory. 
 

 
Figure 7.4.1: A supported beam loaded by a force and a distribution of pressure 

 
It is convenient to show a two-dimensional cross-section of the three-dimensional beam 
together with the beam cross section, as in Fig. 7.4.1.  The beam can be supported in 
various ways, for example by roller supports or pin supports (see section 2.3.3).  The 
cross section of this beam happens to be rectangular but it can be any of many possible 
shapes. 
 
It will assumed that the beam has a longitudinal plane of symmetry, with the cross 
section symmetric about this plane, as shown in Fig. 7.4.2.  Further, it will be assumed 
that the loading and supports are also symmetric about this plane.  With these conditions, 
the beam has no tendency to twist and will undergo bending only1.   
 

 
Figure 7.4.2: The longitudinal plane of symmetry of a beam 

 

                                                 
1 certain very special cases, where there is not a plane of symmetry for geometry and/or loading, can lead 
also to bending with no twist, but these are not considered here 
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Imagine now that the beam consists of many fibres aligned longitudinally, as in Fig. 
7.4.3.  When the beam is bent by the action of downward transverse loads, the fibres near 
the top of the beam contract in length whereas the fibres near the bottom of the beam 
extend.  Somewhere in between, there will be a plane where the fibres do not change 
length.  This is called the neutral surface.  The intersection of the longitudinal plane of 
symmetry and the neutral surface is called the axis of the beam, and the deformed axis is 
called the deflection curve. 
 

 
 

Figure 7.4.3: the neutral surface of a beam 
 
A conventional coordinate system is attached to the beam in Fig. 7.4.3.  The x axis 
coincides with the (longitudinal) axis of the beam, the y axis is in the transverse direction 
and the longitudinal plane of symmetry is in the yx   plane, also called the plane of 
bending. 
 
 
7.4.2 Moments and Forces in a Beam 
 
Normal and shear stresses act over any cross section of a beam, as shown in Fig. 7.4.4.  
The normal and shear stresses acting on each side of the cross section are equal and 
opposite for equilibrium, Fig. 7.4.4b.  The normal stresses   will vary over a section 
during bending.  Referring again to Fig. 7.4.3, over one part of the section the stress will 
be tensile, leading to extension of material fibres, whereas over the other part the stresses 
will be compressive, leading to contraction of material fibres.  This distribution of normal 
stress results in a moment M acting on the section, as illustrated in Fig. 7.4.4c.  Similarly, 
shear stresses   act over a section and these result in a shear force V. 
 
The beams of Fig. 7.4.3 and Fig. 7.4.4 show the normal stress and deflection one would 
expect when a beam bends downward.  There are situations when parts of a beam bend 
upwards, and in these cases the signs of the normal stresses will be opposite to those 
shown in Fig. 7.4.4.  However, the moments (and shear forces) shown in Fig. 7.4.4 will 
be regarded as positive.  This sign convention to be used is shown in Fig. 7.4.5. 
 

x 

y

z
fibres extending 

fibres contracting 

neutral surface 



Section 7.4 

Solid Mechanics Part I                                                                                Kelly 196

 
 

Figure 7.4.4: stresses and moments acting over a cross-section of a beam; (a) a cross-
section, (b) normal and shear stresses acting over the cross-section, (c) the moment 

and shear force resultant of the normal and shear stresses 
 
 

 
 

Figure 7.4.5: sign convention for moments and shear forces 
 

Note that the sign convention for the shear stress conventionally used the beam theory 
conflicts with the sign convention for shear stress used in the rest of mechanics, 
introduced in Chapter 3.  This is shown in Fig. 7.4.6. 
 

 
 

Figure 7.4.6: sign convention for shear stress in beam theory 
 

The moments and forces acting within a beam can in many simple problems be evaluated 
from equilibrium considerations alone.  Some examples are given next. 
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Example 1 
 
Consider the simply supported beam in Fig. 7.4.7.  From the loading, one would expect 
the beam to deflect something like as indicated by the deflection curve drawn.  The 
reaction at the roller support, end A, and the vertical reaction at the pin support2, end B, 
can be evaluated from the equations of equilibrium, Eqns. 2.3.3: 
 

3/2,3/ PRPR ByAy                (7.4.1) 

 

 
 

Figure 7.4.7: a simply supported beam 
 
The moments and forces acting within the beam can be evaluated by taking free-body 
diagrams of sections of the beam.  There are clearly two distinct regions in this beam, to 
the left and right of the load.  Fig. 7.4.8a shows an arbitrary portion of beam representing 
the left-hand side.  A coordinate system has been introduced, with x measured from A.3  
An unknown moment M and shear force V act at the end.  A positive moment and force 
have been drawn in Fig. 7.4.8a.  From the equilibrium equations, one finds that the shear 
force is constant but that the moment varies linearly along the beam: 
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Figure 7.4.8: free body diagrams of sections of a beam 

                                                 
2 the horizontal reaction at the pin is zero since there are no applied forces in this direction; the beam theory 
does not consider such types of (axial) load; further, one does not have a pin at each support, since this 
would prevent movement in the horizontal direction which in turn would give rise to forces in the 
horizontal direction – hence the pin at one end and the roller support at the other end 
3 the coordinate x can be measured from any point in the beam; in this example it is convenient to measure 
it from point A 
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Cutting the beam to the right of the load, Fig. 7.4.8b, leads to 
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The shear force is negative, so acts in the direction opposite to that initially assumed in 
Fig. 7.4.8b. 
 
The results of the analysis can be displayed in what are known as a shear force diagram 
and a bending moment diagram, Fig. 7.4.9.  Note that there is a “jump” in the shear 
force at 3/2lx   equal to the applied force, and in this example the bending moment is 
everywhere positive. 
 

 
 

Figure 7.4.9: results of analysis; (a) shear force diagram, (b) bending moment 
diagram 

■ 
 
Example 2 
 
Fig. 7.4.10 shows a cantilever, that is, a beam supported by clamping one end (refer to 
Fig. 2.3.8). The cantilever is loaded by a force at its mid-point and a (negative) moment at 
its end. 
 

 
 

Figure 7.4.10: a cantilevered beam loaded by a force and moment 
 
Again, positive unknown reactions AM  and AV  are considered at the support A.  From 
the equilibrium equations, one finds that 
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kN5,kNm11  AA VM                (7.4.4) 

 
As in the previous example, there are two distinct regions along the beam, to the left and 
to the right of the applied concentrated force.  Again, a coordinate x is introduced and the 
beam is sectioned as in Fig. 7.4.11.  The unknown moment M and shear force V can then 
be evaluated from the equilibrium equations: 
 

 
 6x3kNm4,0

3x0kNm511,kN5



MV
xMV                 (7.4.5) 

 

 
 

Figure 7.4.11: free body diagrams of sections of a beam 
 
The results are summarized in the shear force and bending moment diagrams of Fig. 
7.4.12. 
 

 
 

Figure 7.4.12: results of analysis; (a) shear force diagram, (b) bending moment 
diagram 

 
In this example the beam experiences negative bending moment over most of its length. 

  ■ 
 
 
Example 3 
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Fig. 7.4.13 shows a simply supported beam subjected to a distributed load (force per unit 
length).  The load is uniformly distributed over half the length of the beam, with a 
triangular distribution over the remainder. 
 

 
 

Figure 7.4.13: a beam subjected to a distributed load 
 
The unknown reactions can be determined by replacing the distributed load with statically 
equivalent forces as in Fig. 7.4.14 (see §3.1.2).  The equilibrium equations then give 
 

N140,N220  CA RR              (7.4.6) 

 

 
 

Figure 7.4.14: equivalent forces acting on the beam of Fig. 7.4.13 
 
Referring again to Fig. 7.4.13, there are two distinct regions in the beam, that under the 
uniform load and that under the triangular distribution of load.  The first case is 
considered in Fig. 7.4.15. 
 

 
 

Figure 7.4.15: free body diagram of a section of a beam 
 
The equilibrium equations give 
 

 6x020220,40220 2  xxMxV       (7.4.7) 
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The region beneath the triangular distribution is shown in Fig. 7.4.16.  Two possible 
approaches are illustrated: in Fig. 7.4.16a, the free body diagram consists of the complete 
length of beam to the left of the cross-section under consideration; in Fig. 7.4.16b, only 
the portion to the right is considered, with distance measured from the right hand end, as 

x12 .  The problem is easier to solve using the second option; from Fig. 7.4.16b then, 
with the equilibrium equations, one finds that 

 
 12x69/)12(10)12(140,3/)12(10140 32  xxMxV    (7.4.8) 

 

 
 

Figure 7.4.16: free body diagrams of sections of a beam 
 
The results are summarized in the shear force and bending moment diagrams of Fig. 
7.4.17. 
 

 
 

Figure 7.4.17: results of analysis; (a) shear force diagram, (b) bending moment 
diagram 

 
  ■ 

 
 
7.4.3 The Relationship between Loads, Shear Forces and 

Bending Moments 
 
Relationships between the applied loads and the internal shear force and bending moment 
in a beam can be established by considering a small beam element, of width x , and 
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subjected to a distributed load )(xp  which varies along the section of beam, and which is 
positive upward, Fig. 7.4.18. 
 

 
 

Figure 7.4.18: forces and moments acting on a small element of beam 
 
At the left-hand end of the free body, at position x, the shear force, moment and 
distributed load have values ( )V x , )(xM  and )(xp  respectively.  On the right-hand end, 
at position xx  , their values are slightly different: ( )V x x  , )( xxM   and 

)( xxp  .  Since the element is very small, the distributed load, even if it is varying, can 
be approximated by a linear variation over the element.  The distributed load can 
therefore be considered to be a uniform distribution of intensity )(xp  over the length x  
together with a triangular distribution, 0 at x  and p  say, a small value, at xx  .  
Equilibrium of vertical forces then gives 
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       (7.4.9) 

 
Now let the size of the element decrease towards zero.  The left-hand side of Eqn. 7.4.9 is 
then the definition of the derivative, and the second term on the right-hand side tends to 
zero, so 
 

)(xp
dx

dV
          (7.4.10) 

 
This relation can be seen to hold in Eqn. 7.4.7 and Fig. 7.4.17a, where the shear force 
over 60  x  has a slope of 40  and the pressure distribution is uniform, of intensity 

N/m40 .  Similarly, over 126  x , the pressure decreases linearly and so does the 
slope in the shear force diagram, reaching zero slope at the end of the beam. 
 
It also follows from 7.4.10 that the change in shear along a beam is equal to the area 
under the distributed load curve: 
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Consider now moment equilibrium, by taking moments about the point A in Fig. 7.4.18: 
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Again, as the size of the element decreases towards zero, the left-hand side becomes a 
derivative and the second and third terms on the right-hand side tend to zero, so that 
 

)(xV
dx

dM
         (7.4.13) 

 
This relation can be seen to hold in Eqns. 7.4.2-3, 7.4.5 and 7.4.7-8.  It also follows from 
Eqn. 7.4.13 that the change in moment along a beam is equal to the area under the shear 
force curve: 
 

  dxxVxMxM
x

x


2

1

)()( 12            (7.4.14) 

 
 
7.4.4 Deformation and Flexural Stresses in Beams 
 
The moment at any given cross-section of a beam is due to a distribution of normal stress, 
or flexural stress (or bending stress) across the section (see Fig. 7.4.4).  As mentioned, 
the stresses to one side of the neutral axis are tensile whereas on the other side of the 
neutral axis they are compressive.  To determine the distribution of normal stress over the 
section, one must determine the precise location of the neutral axis, and to do this one 
must consider the deformation of the beam. 
 
Apart from the assumption of there being a longitudinal plane of symmetry and a neutral 
axis along which material fibres do not extend, the following two assumptions will be 
made concerning the deformation of a beam: 
 
1. Cross-sections which are plane and are perpendicular to the axis of the undeformed 

beam remain plane and remain perpendicular to the deflection curve of the deformed 
beam.  In short: “plane sections remain plane”.  This is illustrated in Fig. 7.4.19.  It 
will be seen later that this assumption is a valid one provided the beam is sufficiently 
long and slender. 

 
2. Deformation in the vertical direction, i.e. the transverse strain yy , may be neglected 

in deriving an expression for the longitudinal strain xx .  This assumption is 

summarised in the deformation shown in Fig. 7.4.20, which shows an element of 
length l and height h undergoing transverse and longitudinal strain. 
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Figure 7.4.19: plane sections remain plane in the elementary beam theory 
 
 

 
 

Figure 7.4.20: transverse strain is neglected in the elementary beam theory 
 
With these assumptions, consider now the element of beam shown in Fig. 7.4.21.  Here, 
two material fibres ab  and pq , of length x  in the undeformed beam, deform to ba   
and qp  .  The deflection curve has a radius of curvature R.  The above two assumptions 
imply that, referring to the figure: 
 

2/ qbabap  (assumption 1) 

qbbqpaap  ,  (assumption 2)              (7.4.15) 

 
Since the fibre ab  is on the neutral axis, by definition abba  .  However the fibre 

pq , a distance y from the neutral axis, extends in length from x  to length x .  The 
longitudinal strain for this fibre is 
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         (7.4.16) 

 
As one would expect, this relation implies that a small R (large curvature) is related to a 
large strain and a large R (small curvature) is related to a small strain.  Further, for 0y  
(above the neutral axis), the strain is negative, whereas if 0y  (below the neutral axis), 
the strain is positive4, and the variation across the cross-section is linear. 
 

                                                 
4 this is under the assumption that R is positive, which means that the beam is concave up; a negative R 
implies that the centre of curvature is below the beam 
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Figure 7.4.21: deformation of material fibres in an element of beam 
 
To relate this deformation to the stresses arising in the beam, it is necessary to postulate 
the stress-strain law for the material out of which the beam is made.  Here, it is assumed 
that the beam is isotropic linear elastic5. 
 
The beam is a three-dimensional object, and so will in general experience a fairly 
complex three-dimensional stress state. We will show in what follows that a simple one-
dimensional approximation, xx xxE  , whilst disregarding all other stresses and strains, 

will be sufficiently accurate for our purposes. 
 
Since there are no forces acting in the z direction, the beam is in a state of plane stress, 
and the stress-strain equations are (see Eqns. 6.1.10) 
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   (7.4.17) 

 
Yet another assumption is now made, that the transverse normal stresses, yy , may be 

neglected in comparison with the flexural stresses xx .  This is similar to the above 

assumption #2 concerning the deformation, where the transverse normal strain was 
neglected in comparison with the longitudinal strain.  It might seem strange at first that 
the transverse stress is neglected, since all loads are in the transverse direction.  However, 
                                                 
5 the beam theory can be extended to incorporate more complex material models (constitutive equations) 
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just as the tangential stresses are much larger than the radial stresses in the pressure 
vessel, it is found that the longitudinal stresses in a beam are very much greater than the 
transverse stresses.  With this assumption, the first of Eqn. 7.4.17 reduces to a one-
dimensional equation: 
 

Exxxx /       (7.4.18) 

 
and, from Eqn. 7.4.16, dropping the subscripts on  , 
 

y
R

E
                 (7.4.19) 

 
Finally, the resultant force of the normal stress distribution over the cross-section must be 
zero, and the resultant moment of the distribution is M, leading to the conditions 
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                     (7.4.20) 

 
and the integration is over the complete cross-sectional area A.  The minus sign in the 
second of these equations arises because a positive moment and a positive y imply a 
compressive (negative) stress (see Fig. 7.4.4). 
 

The quantity dAy
A  is the first moment of area about the neutral axis, and is equal to Ay , 

where y  is the centroid of the section (see, for example, §3.2.1).  Note that the horizontal 
component (“in-out of the page”) of the centroid will always be at the centre of the beam 
due to the symmetry of the beam about the plane of bending.  Since the first moment of 
area is zero, it follows that 0y  : the neutral axis passes through the centroid of the 
cross-section. 
 

The quantity dAy
A

2  is called the second moment of area or the moment of inertia 

about the neutral axis, and is denoted by the symbol I.  It follows that the flexural stress is 
related to the moment through 
 

I

My
  Flexural stress in a beam    (7.4.21) 

 
This is one of the most famous and useful formulas in mechanics. 
 
The Moment of Inertia 
 
The moment of inertia depends on the shape of a beam’s cross-section.  Consider the 
important case of a rectangular cross section.  Before determining the moment of inertia 
one must locate the centroid (neutral axis).  Due to symmetry, the neutral axis runs 
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through the centre of the cross-section.  To evaluate I for a rectangle of height h and 
width b, consider a small strip of height dy  at location y, Fig. 7.4.22.  Then 
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32/

2/

22 bh
dyybdAyI

h

hA

 




    (7.4.22) 

 
This relation shows that the “taller” the cross-section, the larger the moment of inertia, 
something which holds generally for I.  Further, the larger is I, the smaller is the flexural 
stress, which is always desirable. 
 

 
 

Figure 7.4.22: Evaluation of the moment of inertia for a rectangular cross-section 
 
For a circular cross-section with radius R, consider Fig. 7.4.23.  The moment of inertia is 
then 
 

2 4
2 3 2

0 0

sin
4

R

A

R
I y dA r drd

                                            (7.4.23) 

 
 

 
 

Figure 7.2.23: Moment of inertia for a circular cross-section 
 
Example 
 
Consider the beam shown in Fig. 7.4.24.  It is loaded symmetrically by two concentrated 
forces each of magnitude 100N and has a circular cross-section of radius 100mm.  The 
reactions at the two supports are found to be 100N.  Sectioning the beam to the left of the 
forces, and then to the right of the first force, one finds that 
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where l is the length of the beam. 
 

 
 

Figure 7.4.24: a loaded beam with circular cross-section 
 
The maximum tensile stress is then 
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and occurs at all sections between the two loads (at the base of the beam). 

  ■ 
 
 
 
7.4.5 Shear Stresses in Beams 
 
In the derivation of the flexural stress formula, Eqn. 7.4.21, it was assumed that plane 
sections remain plane.  This implies that there is no shear strain and, for an isotropic 
elastic material, no shear stress, as indicated in Fig. 7.4.25. 
 

 
 

Figure 7.4.25: a section of beam before and after deformation 
 
This fact will now be ignored, and an expression for the shear stress   within a beam will 
be developed.  It is implicitly assumed that this shear stress has little effect on the 
(calculation of the) flexural stress. 
 
As in Fig. 7.4.18, consider the equilibrium of a thin section of beam, as shown in Fig. 
7.4.26.  The beam has rectangular cross-section (although the theory developed here is 
strictly for rectangular cross sections only, it can be used to give approximate shear stress 
values in any beam with a plane of symmetry).  Consider the equilibrium of a section of 
this section, at the upper surface of the beam, shown hatched in Fig. 7.4.26.  The stresses 
acting on this section are as shown.  Again, the normal stress is compressive at the 
surface, consistent with the sign convention for a positive moment.  Note that there are no 
shear stresses acting at the surface – there may be distributed normal loads or forces 
acting at the surface but, for clarity, these are not shown, and they are not necessary for 
the following calculation. 

mm250 mm250

mm100r

shear stresses would 
produce an angle change 

before deformation 
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From equilibrium of forces in the horizontal direction of the surface section: 
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The third term on the left here assumes that the shear stress is uniform over the section – 
this is similar to the calculations of §7.4.3 – for a very small section, the variation in 
stress is a small term and may be neglected.  Using the bending stress formula, Eqn. 
7.4.21,  
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and, with Eqn. 7.4.13, as 0x , 

 

Ib

VQ
      Shear stress in a beam         (7.4.28) 

 
where Q is the first moment of area dAy

A  of the surface section of the cross-section.   

 

 
 
Figure 7.4.26: stresses and forces acting on a small section of material at the surface 

of a beam 
 
As mentioned, this formula 7.4.28 can be used as an approximation of the shear stress in a 
beam of arbitrary cross-section, in which case b can be regarded as the depth of the beam 
at that section.  For the rectangular beam, one has 
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so that 
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The maximum shear stress in the cross-section arises at the neutral surface: 
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max            (7.4.31) 

 
and the shear stress dies away towards the upper and lower surfaces.  Note that the 
average shear stress over the cross-section is AV /  and the maximum shear stress is 
150% of this value. 
 
Finally, since the shear stress on a vertical cross-section has been evaluated, the shear 
stress on a longitudinal section has been evaluated, since the shear stresses on all four 
sides of an element are the same, as in Fig.7.4.6. 
 
Example 
 
Consider the simply supported beam loaded by a concentrated force shown in Fig. 7.4.27.  
The cross-section is rectangular with height mm100 and width mm50 .  The reactions at 
the supports are kN5  and kN15 .  To the left of the load, one has kN5V  and 

kNm5xM  .  To the right of the load, one has kN15V  and kNm1530 xM  . 
 
The maximum shear stress will occur along the neutral axis and will clearly occur where 
V is largest, so anywhere to the right of the load: 
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Figure 7.4.27: a simply supported beam 
 
As an example of general shear stress evaluation, the shear stress at a point 25 mm below 
the top surface and 1 m in from the left-hand end is, from Eqn 7.4.30, MPa125.1 .  
The shear stresses acting on an element at this location are shown in Fig. 7.4.28. 
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Figure 7.4.28: shear stresses acting at a point in the beam 
 ■ 

 
 
7.4.6 Approximate nature of the beam theory 
 
The beam theory is only an approximate theory, with a number of simplifications made to 
the full equations of elasticity.  A more advanced (and exact) mechanics treatment of the 
beam problem would not make any assumptions regarding plane sections remaining 
plane, etc. The accuracy of the beam theory can be explored by comparing the beam 
theory results with the results of the more exact theory. 
 
When a beam is in pure bending, that is when the shear force is everywhere zero, the full 
elasticity solution shows that plane sections do actually remain plane and the beam theory 
is exact.  For more complex loadings, plane sections do actually deform.  For example, it 
can be shown that the initially plane sections of a cantilever subjected to an end force, 
Fig. 7.4.29, do not remain plane.  Nevertheless, the beam theory prediction for normal 
and shear stress is exact in this simple case. 
 

 
 

Figure 7.4.29: a cantilevered beam loaded by a force and moment 
 
Consider next a cantilevered beam of length l and rectangular cross section, height h and 
width b, subjected to a uniformly distributed load p.  With x measured from the 
cantilevered end, the shear force and moment are given by )( xlpV   and 

 2 2( / 2) 1 2 / ( / )M pl x l x l    .  The shear stress is 

 

 xly
h

bh

p









 2

2

3 4

6             (7.4.33) 

 
and the flexural stresses at the cantilevered end, at the upper surface, are 
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The solution for shear stress, Eqn 7.4.33, turns out to be exact; however, the exact 
solution corresponding to Eqn 7.4.34 is6 
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    (7.4.35) 

 
It can be seen that the beam theory is a good approximation for the case when hl /  is 
large, in which case the term 1/5 is negligible. 
 
Following this type of analysis, a general rule of thumb is this: for most configurations, 
the elementary beam theory formulae for flexural stress and transverse shear stress are 
accurate to within about 3% for beams whose length-to-height ratio is greater than about 
4. 
 
 
7.4.7 Beam Deflection 
 
Consider the deflection curve of a beam.  The displacement of the neutral axis is denoted 
by v, positive upwards, as in Fig. 7.4.30.  The slope at any point is then given by the first 
derivative, dxdv / . 
 
For any type of material, provided the slope of the deflection curve is small, it can be 
shown that the radius of curvature R is related to the second derivative 22 / dxvd  through 
(see the Appendix to this section, §7.4.10) 
 

2

21

dx

vd

R
       (7.4.36) 

  
and for this reason 22 / dxvd  is called the curvature of the beam.  Using Eqn. 7.4.19, 

REy / , and the flexural stress expression, Eqn. 7.4.21, IMy / , one has the 
moment-curvature equation 
 

2

2

)(
dx

vd
EIxM   moment-curvature equation     (7.4.37) 

 

 
 

Figure 7.4.30: the deflection of a beam 
 
With the moment known, this differential equation can be integrated twice to obtain the 
deflection.  Boundary conditions must be supplied to obtain constants of integration. 
 

                                                 
6 this can be derived using the Stress Function method discussed in Book 2, section 3.2 

v
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Example 
 
Consider the cantilevered beam of length L shown in Fig. 7.4.31, subjected to an end-
force F and end-moment 0M .  The moment is found to be 0)()( MxLFxM  , with x 

measured from the clamped end.  The moment-curvature equation is then 
 

21
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1
2

1
)(

)(

CxCFxxMFLEIv

CFxxMFL
dx

dv
EI

FxMFL
dx

vd
EI
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



       (7.4.38) 

 
The boundary conditions are that the displacement and slope are both zero at the clamped 
end, from which the two constant of integration can be obtained: 
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   (7.4.39) 

 

 
 

Figure 7.4.31: a cantilevered beam loaded by an end-force and moment 
 
The slope and deflection are therefore 
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The maximum deflection occurs at the end, where 
 





  32

0 3

1

2
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)( FLLM

EI
Lv                 (7.4.41) 

 
■ 

 
The term EI  in Eqns. 7.4.40-41 is called the flexural rigidity, since it is a measure of the 
resistance of the beam to deflection. 
 
Example 
 
Consider the simply supported beam of length L shown in Fig. 7.4.32, subjected to a 
uniformly distributed load p over half its length.  In this case, the moment is given by 

FL

0M
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        (7.4.42) 

 

 
 

Figure 7.4.32: a simply supported beam subjected to a uniformly distributed load 
over half its length 

 
It is necessary to apply the moment-curvature equation to each of the two regions 

2/0 Lx   and LxL 2/  separately, since the expressions for the moment in these 
regions differ.  Thus there will be four constants of integration: 
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(7.4.43) 
 
The boundary conditions are: (i) no deflection at roller support, 0)0( v , from which one 

finds that 02 C , and (ii) no deflection at pin support, 0)( Lv , from which one finds 

that LDpLD 1
4

2 24/  .  The other two necessary conditions are the continuity 
conditions where the two solutions meet.  These are that (i) the deflection of both 
solutions agree at 2/Lx   and (ii) the slope of both solutions agree at 2/Lx  .  Using 
these conditions, one finds that 
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The deflection is shown in Fig. 7.4.33.  Note that the maximum deflection occurs in 
2/0 Lx  ; it can be located by setting 0/ dxdv  there and solving. 

 

 
 

Figure 7.4.33: deflection of a beam 
■ 

 
 
7.4.8 Statically Indeterminate Beams 
 
Consider the beam shown in Fig. 7.4.34.  It is cantilevered at one end and supported by a 
roller at its other end.  A moment is applied at its centre.  There are three unknown 
reactions in this problem, the reaction force at the roller and the reaction force and 
moment at the built-in end.  There are only two equilibrium equations with which to 
determine these three unknowns and so it is not possible to solve the problem from 
equilibrium considerations alone.  The beam is therefore statically indeterminate (see the 
end of section 2.3.3). 
 

 
 

Figure 7.4.34: a cantilevered beam supported also by a roller 
 
More examples of statically indeterminate beam problems are shown in Fig. 7.4.35.  To 
solve such problems, one must consider the deformation of the beam.  The following 
example illustrates how this can be achieved. 
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Figure 7.4.35: examples of statically indeterminate beams 
 
Example 
 
Consider the beam of length L shown in Fig. 7.4.36, cantilevered at end A and supported 
by a roller at end B.  A moment 0M  is applied at B. 

 

 
 

Figure 7.4.36: a statically indeterminate beam 
 
The moment along the beam can be expressed in terms of the unknown reaction force at 
end B: 0)()( MxLRxM B  .  As before, one can integrate the moment-curvature 

equation: 
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         (7.4.46) 

 
There are three boundary conditions, two to determine the constants of integration and 
one can be used to determine the unknown reaction BR .  The boundary conditions are (i) 

00)0( 2  Cv , (ii) 00)0(/ 1  Cdxdv  and (iii) 0)( Lv  from which one finds 

that LMRB 2/3 0 .  The slope and deflection are therefore 
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One can now return to the equilibrium equations to find the remaining reactions acting on 
the beam, which are BA RR   and BA LRMM  0  

■ 
 
 
7.4.9 The Three-point Bending Test 
 
The 3-point bending test is a very useful experimental procedure.  It is used to gather data 
on materials which are subjected to bending in service.  It can also be used to get the 
Young’s Modulus of a material for which it might be more difficult to get via a tension or 
other test. 
 
A mouse bone is shown in the standard 3-point bend test apparatus in Fig. 7.4.37a.  The 
idealised beam theory model of this test is shown in Fig. 7.4.37b.  The central load is F, 
so the reactions at the supports are / 2F .  The moment is zero at the supports, varying 
linearly to a maximum / 4FL  at the centre. 
 

 
 

Figure 7.4.37: the three-point bend test; (a) a mouse bone specimen, (b) idealised 
model 

 
The maximum flexural stress then occurs at the outer fibres at the centre of the beam: for 
a circular cross-section, 3

max /FL R  .  Integrating the moment-curvature equation, 

and using the fact that the deflection is zero at the supports and, from symmetry, the slope 
is zero at the centre, the maximum deflection is seen to be 3 4

max / 12v FL R E .  If one 

plots the load F against the deflection maxv , one will see a straight line (initially, before 

the elastic limit is reached); let the slope of this line be Ê .  The Young’s modulus can 
then be evaluated through 
 

3

4
ˆ

12

L
E E

R
                                                 (7.4.48) 

 

(a)

/ 2L / 2L

F

maxv

(b)

1 



Section 7.4 

Solid Mechanics Part I                                                                                Kelly 218

With E  , the maximum strain is 3 2
max max/ 12 /FL ER Rv L   .  By carrying the 

test on beyond the elastic limit, the strength of the material at failure can be determined. 
 
 
7.4.10 Problems 
 
1. The simply supported beam shown below carries a vertical load that increases 

uniformly from zero at the left end to a maximum value of 9 kN/m at the right end.  
Draw the shearing force and bending moment diagrams 

 

 
 
 
2. The beam shown below is simply supported at two points and overhangs the supports 

at each end.  It is subjected to a uniformly distributed load of 4 kN/m as well as a 
couple of magnitude 8 kN m applied to the centre.  Draw the shearing force and 
bending moment diagrams 

 

 
 
3. Evaluate the centroid of the beam cross-section shown below (all measurements in 

mm) 
 

 
 
4. Determine the maximum tensile and compressive stresses in the following beam (it 

has a rectangular cross-section with height 75 mm and depth 50 mm) 
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5. Consider the cantilever beam shown below.  Determine the maximum shearing stress 

in the beam and determine the shearing stress 25 mm from the top surface of the beam 
at a section adjacent to the supporting wall.  The cross-section is the “T” shape shown, 
for which 46 mm1040I . 
[note: use the shear stress formula derived for rectangular cross-sections – as 
mentioned above, in this formula, b is the thickness of the beam at the point where the 
shear stress is being evaluated] 

 
 

 
 
6. Obtain an expression for the maximum deflection of the simply supported beam 

shown here, subject to a uniformly distributed load of N/mw . 
 

 
 
7. Determine the equation of the deflection curve for the cantilever beam loaded by a 

concentrated force P as shown below. 
  

 
 
8. Determine the reactions for the following uniformly loaded beam clamped at both 

ends. 
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7.4.11 Appendix to §7.4 
 
Curvature of the deflection curve 
 
Consider a deflection curve with deflection )(xv  and radius of curvature )(xR , as shown 
in the figure below.  Here, deflection is the transverse displacement (in the y direction) of 
the points that lie along the axis of the beam.  A relationship between )(xv  and )(xR  is 
derived in what follows. 
 

 
 
First, consider  a curve (arc) s.  The tangent to some point p makes an angle   with the x 
– axis, as shown below.  As one move along the arc,   changes. 
 

 
 
Define the curvature   of the curve to be the rate at which   increases relative to s, 
 

ds

d   

 
Thus if the curve is very “curved”,   is changing rapidly as one moves along the curve 
(as one increase s) and the curvature will be large. 
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From the above figure,  
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Finally, it will be shown that the curvature is simply the reciprocal of the radius of 
curvature.  Draw a circle to the point p with radius R .  Arbitrarily measure the arc length 
s from the point c, which is a point on the circle such that cop .  Then arc length 

Rs  , so that 
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If one assumes now that the slopes of the deflection curve are small, then 1/ dxdv  and 
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1. http://www.mc.vanderbilt.edu/root/vumc.php?site=CenterForBoneBiology&doc=20412 
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7.5 Elastic Buckling 
 
The initial theory of the buckling of columns was worked out by Euler in 1757, a nice 
example of a theory preceding the application, the application mainly being for the 
later “invented” metal and concrete columns in modern structures. 
 
 
7.5.1 Columns and Buckling 
 
A column is a long slender bar under axial compression, Fig. 7.5.1.  A column can be 
horizontal, vertical or inclined; in the latter cases it is termed a strut. 
 
The column under axial compression responds elastically in exactly the same way as 
the axial bar of §7.1.  For example, it decreases in length under a compressive force P 
by an amount given by Eqn. 7.1.5, EAPL / .  However, when the compressive 
force is large enough, the column will buckle with lateral deflection.  This possibility 
is the subject of this section. 
 
Euler’s Theory of Buckling 
 
Consider an elastic column of length L, pin-ended so free to rotate at its ends, 
subjected to an axial load P, Fig. 7.5.1.  Assume that it undergoes a lateral deflection 
denoted by v.  Moment equilibrium of a section of the deflected column cut at a 
typical point x, and using the moment-curvature Eqn. 7.4.37, results in  
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vd
EIxMxPv                                            (7.5.1) 

 
Hence the deflection v satisfies the differential equation 
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Fig. 7.5.1: a column with deflection v 
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The ordinary differential equation 7.5.2 is linear, homogeneous and with constant 
coefficients.  Its solution can be found in any standard text on differential equations 
and is given by (for 2 0k  ) 
 

   kxBkxAxv sincos)(                                       (7.5.4)  
 
where A and B are as yet unknown constants.  The boundary conditions for pinned-
ends are 
 

 0)(,0)0(  Lvv                                         (7.5.5)  
 

The first condition requires A to be zero and the second leads to 
 

   0sin kLB                                                  (7.5.6) 
 
It follows that either: 
(a) 0B , in which case 0)( xv  for all x and the column is not deflected 

or 
(b)   0sin kL , which holds when kL  is an integer number of ’s, i.e. 
 

,3,2,1,  n
L

n
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,                                      (7.5.7) 

 
As mentioned, the solution (a) is governed by the axial deformation theory discussed 
in §7.1.  Concentrating on (b), the corresponding solution for the deflection is 
 

   ,3,2,1,sin)( 





 n

L

xn
Bxvn


                             (7.5.8) 

 
The parameter k is defined by Eqn. 7.5.3, so that, using 7.5.7, 
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It has hence been shown that buckling, i.e. 0v , can only occur at a discreet set of 
applied loads - the buckling loads - given by 7.5.9.  In practice the most important 
buckling load is the first, corresponding to 1n , since this will be the first of the 
loads reached as the applied load P is increased from zero; this is called the critical 
buckling load: 
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with associated deflection 
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The column hence deforms into a single sine wave, which is termed the mode or 
mode shape of the deflected column.  Note that B , the amplitude of the deflection, 
can not be determined by this model.  This is a consequence of assuming the 
deflection is small; of linearising the problem (which is inherent in the derivation of 
the moment-deflection curve, Eqn. 7.5.1).  A more exact finite deformation theory has 
been worked out and is called the theory of the elastica, but this is not pursued here. 
 
This mathematical structure, where one finds one can only get non-zero solutions of 
an equation for certain values of a parameter is very common in engineering and 
theoretical physics.  The critical values of the parameter, in this case k, are termed the 
eigenvalues of the problem, and the corresponding non-zero solutions, )(xv , are the 
eigenfunctions. 
 

The second moment of area I has dimensions of  4length , and for columns is often 

written in the form 2ArI   where A is the cross-sectional area of the column and the 
length r is called the radius of gyration.  For example in the case of a circular shaft 
of radius a, 4/4aI   (see Eqn. 7.4.23) so 2/ar  . 
 
Failure of the Column 
 
The expression 7.5.10 for the critical buckling load can be written in terms of the 
radius of gyration: 
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/ rLE
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                             (7.5.12) 

 
where cr  is the mean compressive stress on the loaded end of the column. 

 
The second equation in 7.5.12 is the most convenient non-dimensional form of 
presenting theoretical and experimental results for buckling problems. The ratio rL /  
is called the slenderness ratio. 
 
Failure of the column will occur in purely axial compression if the stress in the 
column reaches the yield stress of the material (see §5.2).  On the other hand, if the 
critical buckling stress cr  is less than the yield stress, then the column will fail by 

buckling before the yield stress is reached. 
 
Eqn. 7.5.12 is plotted in Fig. 7.5.2.  The yield stress of the material is denoted by Y.  
A critical slenderness ratio is denoted by  crrL / .  For slenderness ratios less than the 

critical value, that is, for relatively squat columns, the stress in the column will reach 
the yield stress before buckling occurs. 
 
For example, consider a steel column for which GPa210E  and MPa210Y .  
The critical value of the slenderness ratio is then 35.99/ rL , which is a length to 
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diameter ratio of about 25 for a circular column.  Buckling will then occur in such 
columns which have 35.99/ rL , for sufficiently high applied axial compressive 
force. 
 

 
 

Fig. 7.5.2: critical values of the slenderness ratio 
 
  
7.5.2 A General Approach to Buckling 
 
The model developed above only applies to columns simply supported at each end.  
To discuss the more general case one can return to the formulation of the bending of a 
beam discussed in §7.4.3, but include also axial forces.  Fig. 7.4.18 is reproduced as 
Fig. 7.5.3 but now with compressive axial forces, the forces offset by a small 
increment in deflection v . 
 

 
 

Figure 7.5.3: forces and moments acting on a column 
 
Resolving vertically, one again arrives at Eqn. 7.4.10: 
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Resolving horizontally, one simply gets  xxPxP )( , so that P is constant.  
Taking moments, one has, instead of 7.4.13, 
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Note the extra term involving P, which is not present in pure bending theory.  
Eliminating M between 7.5.14 and the moment-curvature equation 7.4.37 then leads 
to an expression for the shear force: 
 

           
dx

dv

EI

P

dx

vd

EI

V


3

3

                                         (7.5.15)  

 
Note that, in the beam theory, where 0P , the third derivative of the deflection is 
zero whenever the shear force is zero, in particular at a free, i.e. unsupported, end.  
Here, however, it is no longer true that the third derivative is zero. 
 
The final differential equation is now obtained by differentiating 7.5.15 and using 
7.5.13: 
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                                       (7.5.16) 

  
Concentrating on the buckling behaviour and so neglecting the transverse load )(xp 1, 
one arrives at the differential equation 
 

0
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2
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dx

vd
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dx

vd
                                       (7.5.17) 

 
where again  EIPk /2   (Eqn. 7.5.3).  Eqn. 7.5.17 is a homogeneous fourth-order 
differential equation and its solution is  
 

     DCxkxBkxAxv  sincos)(                            (7.5.18) 
 
The four constants are determined by the end conditions on )(xv , two conditions at 
each end.  There are three cases: 
 
(1) Pinned end: 

boundary conditions are 0v  and 0M ; from the moment-curvature 
equation, 0M  can be replaced with 0/ 22 dxvd   

(2) Fixed end: 
boundary conditions are 0/,0  dxdvv  

(3) Free end: 
Boundary conditions are 0M  and 0V ; again, this implies that 

0/ 22 dxvd  and, from Eqn. 7.5.15, 0V  can be replaced with 
  0// 233  dxdvkdxvd  

 
The case of pinned-pinned results again in the Euler solution given above.  Consider 
now the case where one end is clamped and the other, loaded, end, is unrestrained 
(“fixed-free”), Fig. 7.5.4. 
 

                                                 
1 bars subjected to both axial compressive loads and transverse loads are called beam-columns 



Section 7.5 

Solid Mechanics Part I                                                                                Kelly 227

 

 
 

Fig. 7.5.4: a fixed-free column 
 
At the clamped end, 0)0()0(  vv , giving  
 

 0,0  kBCDA                                 (7.5.19) 
 
At the free end, 0)(  Lv  and 0)()( 2  LvkLv , leading to  
 

         0,0sincos  CkxBkxA         (7.5.20) 
 

Thus, from 7.5.19, B too is zero and A satisfies 
 

  0cos kLA                                              (7.5.21) 
 
Buckling hence can only occur when   0cos kL , i.e. when  
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  nnkL                               (7.5.22) 

 
Using the definition of the parameter k the buckling loads are given by 
 

 
,2,1,0,

2

2
1








 
 n

L

n
EIP


                             (7.5.23) 

 
with the critical buckling load now 
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L
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                                     (7.5.24)  

 
which is one quarter of the value for a pinned strut, Eqn. 7.5.10.  The buckling modes 
are given by 7.5.18: 
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nDxv                      (7.5.25) 

 
The first three modes are sketched in Fig. 7.5.5; again, the amplitude is unknown, 
only the shape. 
 

 
  

Figure 7.5.5: mode shapes for the fixed-free column 
 
Other cases of end-support can be treated in the same way.  Results for the critical 
buckling stress for various cases are sketched in Fig. 7.5.6. 
 
 

 
 

Fig. 7.5.6: critical values of the slenderness ratio for different end-cases 
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