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7.5 Elastic Buckling 
 
The initial theory of the buckling of columns was worked out by Euler in 1757, a nice 
example of a theory preceding the application, the application mainly being for the 
later “invented” metal and concrete columns in modern structures. 
 
 
7.5.1 Columns and Buckling 
 
A column is a long slender bar under axial compression, Fig. 7.5.1.  A column can be 
horizontal, vertical or inclined; in the latter cases it is termed a strut. 
 
The column under axial compression responds elastically in exactly the same way as 
the axial bar of §7.1.  For example, it decreases in length under a compressive force P 
by an amount given by Eqn. 7.1.5, EAPL / .  However, when the compressive 
force is large enough, the column will buckle with lateral deflection.  This possibility 
is the subject of this section. 
 
Euler’s Theory of Buckling 
 
Consider an elastic column of length L, pin-ended so free to rotate at its ends, 
subjected to an axial load P, Fig. 7.5.1.  Assume that it undergoes a lateral deflection 
denoted by v.  Moment equilibrium of a section of the deflected column cut at a 
typical point x, and using the moment-curvature Eqn. 7.4.37, results in  
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Hence the deflection v satisfies the differential equation 
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Fig. 7.5.1: a column with deflection v 
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The ordinary differential equation 7.5.2 is linear, homogeneous and with constant 
coefficients.  Its solution can be found in any standard text on differential equations 
and is given by (for 2 0k  ) 
 

   kxBkxAxv sincos)(                                       (7.5.4)  
 
where A and B are as yet unknown constants.  The boundary conditions for pinned-
ends are 
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The first condition requires A to be zero and the second leads to 
 

   0sin kLB                                                  (7.5.6) 
 
It follows that either: 
(a) 0B , in which case 0)( xv  for all x and the column is not deflected 

or 
(b)   0sin kL , which holds when kL  is an integer number of ’s, i.e. 
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As mentioned, the solution (a) is governed by the axial deformation theory discussed 
in §7.1.  Concentrating on (b), the corresponding solution for the deflection is 
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The parameter k is defined by Eqn. 7.5.3, so that, using 7.5.7, 
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It has hence been shown that buckling, i.e. 0v , can only occur at a discreet set of 
applied loads - the buckling loads - given by 7.5.9.  In practice the most important 
buckling load is the first, corresponding to 1n , since this will be the first of the 
loads reached as the applied load P is increased from zero; this is called the critical 
buckling load: 
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with associated deflection 
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The column hence deforms into a single sine wave, which is termed the mode or 
mode shape of the deflected column.  Note that B , the amplitude of the deflection, 
can not be determined by this model.  This is a consequence of assuming the 
deflection is small; of linearising the problem (which is inherent in the derivation of 
the moment-deflection curve, Eqn. 7.5.1).  A more exact finite deformation theory has 
been worked out and is called the theory of the elastica, but this is not pursued here. 
 
This mathematical structure, where one finds one can only get non-zero solutions of 
an equation for certain values of a parameter is very common in engineering and 
theoretical physics.  The critical values of the parameter, in this case k, are termed the 
eigenvalues of the problem, and the corresponding non-zero solutions, )(xv , are the 
eigenfunctions. 
 

The second moment of area I has dimensions of  4length , and for columns is often 

written in the form 2ArI   where A is the cross-sectional area of the column and the 
length r is called the radius of gyration.  For example in the case of a circular shaft 
of radius a, 4/4aI   (see Eqn. 7.4.23) so 2/ar  . 
 
Failure of the Column 
 
The expression 7.5.10 for the critical buckling load can be written in terms of the 
radius of gyration: 
 

 
2

2 







L
EArPcr


         or         

 2

2

/ rLE
cr 
                             (7.5.12) 

 
where cr  is the mean compressive stress on the loaded end of the column. 

 
The second equation in 7.5.12 is the most convenient non-dimensional form of 
presenting theoretical and experimental results for buckling problems. The ratio rL /  
is called the slenderness ratio. 
 
Failure of the column will occur in purely axial compression if the stress in the 
column reaches the yield stress of the material (see §5.2).  On the other hand, if the 
critical buckling stress cr  is less than the yield stress, then the column will fail by 

buckling before the yield stress is reached. 
 
Eqn. 7.5.12 is plotted in Fig. 7.5.2.  The yield stress of the material is denoted by Y.  
A critical slenderness ratio is denoted by  crrL / .  For slenderness ratios less than the 

critical value, that is, for relatively squat columns, the stress in the column will reach 
the yield stress before buckling occurs. 
 
For example, consider a steel column for which GPa210E  and MPa210Y .  
The critical value of the slenderness ratio is then 35.99/ rL , which is a length to 
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diameter ratio of about 25 for a circular column.  Buckling will then occur in such 
columns which have 35.99/ rL , for sufficiently high applied axial compressive 
force. 
 

 
 

Fig. 7.5.2: critical values of the slenderness ratio 
 
  
7.5.2 A General Approach to Buckling 
 
The model developed above only applies to columns simply supported at each end.  
To discuss the more general case one can return to the formulation of the bending of a 
beam discussed in §7.4.3, but include also axial forces.  Fig. 7.4.18 is reproduced as 
Fig. 7.5.3 but now with compressive axial forces, the forces offset by a small 
increment in deflection v . 
 

 
 

Figure 7.5.3: forces and moments acting on a column 
 
Resolving vertically, one again arrives at Eqn. 7.4.10: 
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Resolving horizontally, one simply gets  xxPxP )( , so that P is constant.  
Taking moments, one has, instead of 7.4.13, 
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Note the extra term involving P, which is not present in pure bending theory.  
Eliminating M between 7.5.14 and the moment-curvature equation 7.4.37 then leads 
to an expression for the shear force: 
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Note that, in the beam theory, where 0P , the third derivative of the deflection is 
zero whenever the shear force is zero, in particular at a free, i.e. unsupported, end.  
Here, however, it is no longer true that the third derivative is zero. 
 
The final differential equation is now obtained by differentiating 7.5.15 and using 
7.5.13: 
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Concentrating on the buckling behaviour and so neglecting the transverse load )(xp 1, 
one arrives at the differential equation 
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where again  EIPk /2   (Eqn. 7.5.3).  Eqn. 7.5.17 is a homogeneous fourth-order 
differential equation and its solution is  
 

     DCxkxBkxAxv  sincos)(                            (7.5.18) 
 
The four constants are determined by the end conditions on )(xv , two conditions at 
each end.  There are three cases: 
 
(1) Pinned end: 

boundary conditions are 0v  and 0M ; from the moment-curvature 
equation, 0M  can be replaced with 0/ 22 dxvd   

(2) Fixed end: 
boundary conditions are 0/,0  dxdvv  

(3) Free end: 
Boundary conditions are 0M  and 0V ; again, this implies that 

0/ 22 dxvd  and, from Eqn. 7.5.15, 0V  can be replaced with 
  0// 233  dxdvkdxvd  

 
The case of pinned-pinned results again in the Euler solution given above.  Consider 
now the case where one end is clamped and the other, loaded, end, is unrestrained 
(“fixed-free”), Fig. 7.5.4. 
 

                                                 
1 bars subjected to both axial compressive loads and transverse loads are called beam-columns 
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Fig. 7.5.4: a fixed-free column 
 
At the clamped end, 0)0()0(  vv , giving  
 

 0,0  kBCDA                                 (7.5.19) 
 
At the free end, 0)(  Lv  and 0)()( 2  LvkLv , leading to  
 

         0,0sincos  CkxBkxA         (7.5.20) 
 

Thus, from 7.5.19, B too is zero and A satisfies 
 

  0cos kLA                                              (7.5.21) 
 
Buckling hence can only occur when   0cos kL , i.e. when  
 

,2,1,0,
2

1







  nnkL                               (7.5.22) 

 
Using the definition of the parameter k the buckling loads are given by 
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with the critical buckling load now 
 

P

M



Section 7.5 

Solid Mechanics Part I                                                                                Kelly 228

 
2

2








L
EIPcr


                                     (7.5.24)  

 
which is one quarter of the value for a pinned strut, Eqn. 7.5.10.  The buckling modes 
are given by 7.5.18: 
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The first three modes are sketched in Fig. 7.5.5; again, the amplitude is unknown, 
only the shape. 
 

 
  

Figure 7.5.5: mode shapes for the fixed-free column 
 
Other cases of end-support can be treated in the same way.  Results for the critical 
buckling stress for various cases are sketched in Fig. 7.5.6. 
 
 

 
 

Fig. 7.5.6: critical values of the slenderness ratio for different end-cases 
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