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7.1 One Dimensional Axial Deformations 
 
In this section, a specific simple geometry is considered, that of a long and thin straight 
component loaded in such a way that it deforms in the axial direction only.  The x-axis is 
taken as the longitudinal axis, with the cross-section lying in the yx   plane, Fig. 7.1.1. 
 

 
 

Figure 7.1.1: A slender straight component; (a) longitudinal axis, (b) cross-section 
 
 
7.1.1 Basic relations for Axial Deformations 
 
Any static analysis of a structural component involves the following three considerations: 

(1) constitutive response 
(2) kinematics 
(3) equilibrium 

 
In this Chapter, it is taken for (1) that the material responds as an isotropic linear elastic 
solid.  It is assumed that the only significant stresses and strains occur in the axial 
direction, and so the stress-strain relations 6.1.8-9 reduce to the one-dimensional equation 

xxxx E   or, dropping the subscripts, 

 
 E          (7.1.1) 

 
Kinematics (2), the study of deformation, was the subject of Chapter 4.  In the theory 
developed here, known as axial deformation, it is assumed that the axis of the 
component remains straight and that cross-sections that are initially perpendicular to the 
axis remain perpendicular after deformation.  This implies that, although the strain might 
vary along the axis, it remains constant over any cross section.  The axial strain occurring 
over any section is defined by Eqn. 4.1.2, 
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This is illustrated in Fig. 7.1.2, which shows a (shaded) region undergoing a compressive 
(negative) strain. 
 
Recall that individual particles/points undergo displacements whereas regions/line-
elements undergo strain.  In Fig. 7.1.2, the particle originally at A has undergone a 
displacement )(Au  whereas the particle originally at B has undergone a displacement 

)(Bu .  From Fig. 7.1.2, another way of expressing the strain in the shaded region is (see 
Eqn. 4.1.3) 
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Figure 7.1.2: axial strain; (a) before deformation, (b) after deformation 
 
Both displacements )(Au  and )(Bu  of Fig. 7.1.2 are positive, since the particles displace 
in the positive x direction – if they moved to the left, for consistency, one would say they 
underwent negative displacements.  Further, positive stresses are as shown in Fig. 7.1.3a 
and negative stresses are as shown in Fig. 7.1.3b.  From Eqn. 7.1.1, a positive stress 
implies a positive strain (lengthening) and a compressive stress implies a negative strain 
(contracting) 
 

 
 
Figure 7.1.3: Stresses arising in the slender component; (a) positive (tensile) stress, 

(b) negative (compressive) stress 
 
Equilibrium, (3), will be considered in the individual examples below. 
 
Note that, in the previous Chapter, problems were solved using only the stress-strain law 
(1).  Kinematics (2) and equilibrium (3) were not considered, the reason being the 
problems were so simple, with uniform (homogeneous) stress and strain (as indeed also in 
the first example which follows).  Whenever more complex problems are encountered, 
with non-uniform stress and strains, (3) and perhaps (2) need to be considered to solve for 
the stress and strain. 
 
 
7.1.2 Structures with Uniform Members 
 
A uniform axial member is one with cross-section A and modulus E constant along its 
length, and loaded with axial forces at its ends only. 
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Example 
 
Consider the bar of initial length L shown in Fig. 7.1.4, subjected to equal and opposite 
end-forces F.  The free-body (equilibrium) diagram of a section of the bar shown in Fig. 
7.1.4b shows that the internal force is also F everywhere along the bar.  The stress is thus 
everywhere AF /  and the strain is everywhere 
 

EA

F
      (7.1.4) 

 
and, from Eq. 7.1.2, the bar extends in length by an amount 
 

EA

FL
                                                           (7.1.5) 

 
Note that, although the force acting on the left-hand end is negative (acting in the x  
direction), the stress there is positive (see Fig. 7.1.3). 
 

 
 
Figure 7.1.4: A uniform axial member; (a) subjected to axial forces F, (b) free-body 

diagram 
 
Displacements need to be calculated relative to some datum displacement1.  For example, 
suppose that the displacement at the centre of the bar is zero, 0)( Bu , Fig. 7.1.4.  Then, 
from Eqn. 7.1.3, 
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1 which is another way of saying that one can translate the bar left or right as a rigid body without affecting 
the stress or strain – but it does affect the displacements 
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Example 
 
Consider the two-element structure shown in Fig. 7.1.5.  The first element is built-in to a 
wall at end A, is of length 1L , cross-sectional area 1A  and Young’s modulus 1E .  The 

second element is attached at B and has properties 222 ,, EAL .  External loads F  and P 
are applied at B and C as shown.  An unknown reaction force R acts at the wall, at A.  
This can be determined from the force equilibrium equation for the complete structure: 
 

0 PFR                             (7.1.7) 
 
Note that, as is usual, the reaction is assumed to act in the positive (x) direction.  With R 
known, the stress )1(  in the first element can be evaluated using the free-body diagram 
7.1.5b, and (2)  using Fig. 7.1.5c: 
 

2

)2(

1

)1( ,
A

P

A

FP



                      (7.1.8) 

 
and so the strain is 
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Note that the stress and strain are discontinuous at B 2. 
 

 
 

Figure 7.1.5: A two-element structure (a) subjected to axial forces F and P, (b,c) 
free-body diagrams 

 
For each element, the total elongations i  are 

 

                                                 
2 this result, which can be viewed as a violation of equilibrium at B, is a result of the one-dimensional 
approximation of what is really a two-dimensional problem 
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If FP  , then 01   as expected, with 0R  and 0 . 
 
Thus far, the stress and strain (and elongations) have been obtained.  If one wants to 
evaluate the displacements, then one needs to ensure that the strains in each of the two 
elements are compatible, that is, that the elements fit together after deformation just like 
they did before deformation.  In this example, the displacements at B and C are 
  

21 )()(,)()(  BuCuAuBu                                (7.1.11) 
 
A compatibility condition, bringing together the separate relations in 7.1.11, is then 
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ensuring that )(Bu  is unique.  As in the previous example, the displacements can now be 
calculated if the displacement at any one (datum) point is known.  Indeed, it is known that 

0)( Au . 
■ 

 
 
Example 
 
Consider next the similar situation shown in Fig. 7.1.6.  Here, both ends of the two-
element structure are built-in and there is only one applied force, F, at B.  There are now 
two reaction forces, at ends A and C, but there is only one equilibrium equation to 
determine them: 
 

0 CA RFR                    (7.1.13) 

 
Any structure for which there are more unknowns than equations of equilibrium, so that 
the stresses cannot be determined without considering the deformation of the structure, is 
called a statically indeterminate structure3. 
 

                                                 
3 See the end of §2.3.3 
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Figure 7.1.6: A two-element structure built-in and both ends; (a) subjected to an 
axial force F, (b,c) free-body diagrams 

 
 
In terms of the unknown reactions, the strains are 
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and, for each element, the total elongations are 
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Finally, compatibility of both elements implies that the total elongation 021  .  
Using this relation with Eqn. 7.1.13-14 then gives 
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The displacements can now be evaluated, for example, 
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so that a positive F displaces B to the right and a negative F displaces B to the left. 

■ 
 
Note the general solution procedure in this last example, known as the basic force 
method: 
 

Equilibrium + Compatibility of Strain in terms of unknown Forces  
 Solve equations for unknown Forces 
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The Stiffness Method 
 
The stiffness method (also known as the displacement method) is a slight modification 
of the above solution procedure, where the final equations to be solved involve known 
forces and unknown displacements only: 
 

Equilibrium in terms of Displacement 
 Solve equations for unknown Displacements 

 
If one deals in displacements, one does not need to ensure compatibility (it will 
automatically be satisfied); compatibility only needs to be considered when dealing in 
strains (as in the previous example)4. 
 
Example (The Stiffness Method) 
 
Consider a series of three bars of cross-sectional areas 321 ,, AAA , Young’s moduli 

321 ,, EEE  and lengths 321 ,, LLL , Fig. 7.1.7.  The first and third bars are built-in at points 

A and D, bars one and two meet at B and bars two and three meet at C.  Forces BP  and CP  

act at B and C respectively. 
 
The force is constant in each bar, and for each bar there is a relation between the force iF , 

and elongation, i , Eqn. 7.1.5: 

 

iii kF      where     
i
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Here, ik  is the effective stiffness of each bar.  The elongations are related to the 

displacements, AB uu 1  etc., so that, with 0 DA uu , 
 

  CBCB ukFuukFukF 332211 ,,               (7.1.19) 

 
There are two degrees of freedom in this problem, that is, two nodes are free to move.  
One therefore needs two equilibrium equations.  One could use any two of 
 

0,0,0 322131  FPFFPFFPPF CBCB         (7.1.20) 

 
In the stiffness method, one uses the second and third of these; the second is the “node B” 
equation and the third is the “node C” equation.  Substituting Eqns. 7.1.19 into 7.1.20 
leads to the system of two equations  
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4 the reason is: if you know the displacements, you know where every particle is and you know the strains 
and everything else; if you only know the strains, you know the change in displacement, but you do not 
know the actual displacements. You need some extra information to know the displacements – this is the 
compatibility equation 
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which can be solved for the two unknown nodal displacements. 
 

 
 

Figure 7.1.7: three bars in series; (a) subjected to external loads, (b,c,d) free-body 
diagrams 

 
Equations 7.1.21 can also be written in the matrix form 
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         (7.1.22) 

 
Note that it was not necessary to evaluate the reactions to obtain a solution.  Once the 
forces have been found, the reactions can be found using the free-body diagram of Fig. 
7.1.7d. 
 
The stiffness method is a very systematic procedure.  It can be used to solve for structures 
with many elements, with the two equations 7.1.21, 7.1.22, replaced by a large system of 
equations which can be solved numerically using a computer. 
 
 
7.1.3 Structures with Non-uniform Members 
 
Consider the structure shown in Fig. 7.1.8, an axial bar consisting of two separate 
components bonded together.  The components have Young’s moduli 21 , EE  and cross-

sectional areas 21 , AA .  The bar is subjected to equal and opposite forces F as shown, in 
such a way that axial deformations occur, that is, the cross-sections remain perpendicular 
to the x axis throughout the deformation. 
 
Since there are only axial deformations, the strain is constant over a cross-section.  
However, the stress is not uniform, with  11 E  and  22 E ; on any cross-section, 
the stress is higher in the stiffer component.  The resultant force acting on each 
component is 111 AEF   and 222 AEF  .  Since FFF  21 , the total elongation is 
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Figure 7.1.8: A bar consisting of two separate materials bonded together 
 
 
7.1.4 Resultant Force and Moment 
 
Consider the force and moments acting over any cross-section, Fig. 7.1.9.  The resultant 
force is the integral of the stress times elemental area over the cross section, Eqn. 3.1.2, 
 

dAF
A
                                           (7.1.24) 

 
There are two moments; the moment yM  about the y axis and zM  about the z axis, 

 

dAyMdAzM
A
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y    ,             (7.1.25) 

 
Positive moments are defined through the right hand rule, i.e. with the thumb of the 
right hand pointing in the positive y direction, the closing of the fingers indicates the 
positive yM ; the negative sign in Eqn. 7.1.25b is due to the fact that a positive stress with 

0y  would lead to a negative moment zM . 
 
 

 
 

Figure 7.1.9: Resultants on a cross-section; (a) resultant force, (b) resultant 
moments 

 
Consider now the case where the stress is constant over a cross-section.  (Since it is 
assumed that the strain is constant over the cross-section, from Eqn. 7.1.1 this will occur 
when the Young’s modulus is constant.)  In that case, Eqns. 7.1.24-25 can be re-written 
as 
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The quantities dAz
A  and dAy

A  are the first moments of area about, respectively, 

the y and z axes.  These are equal to Az  and Ay , where ),( zy  are the coordinates of 
the centroid of the section (see Eqn. 3.2.2).  Taking the x axis to run through the 
centroid, 0 zy , which results in 0 zy MM .  Thus, a resultant axial force 

which acts through the centroid of the cross-section ensures that there is no 
moment/rotation of that cross-section, the main assumption of this section. 
 
For the non-uniform member of Fig. 7.1.8, since the resultant of a constant stress over an 
area is a force acting through the centroid of that area, the forces 21 , FF  act through the 

centroids of the respective areas 21 , AA .  The precise location of the total resultant force F 

can be determined by taking the moments of the forces 21 , FF  about the y and z axes, and 
equating this to the moment of the force F about these axes.  
 
 
7.1.5 Problems 
 
1. Consider the rigid beam supported by two deformable bars shown below.  The bars 

have properties 11, AL  and 2 2,L A  and have the same Young’s modulus E.  They are 

separated by a distance L.  The beam supports an arbitrary load at position x, as 
shown.  What is x if the beam is to remain horizontal after deformation. 
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