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6.3 Anisotropic Elasticity 
 
There are many materials which, although well modelled using the linear elastic model, 
are not nearly isotropic.  Examples are wood, composite materials and many biological 
materials.  The mechanical properties of these materials differ in different directions.  
Materials with this direction dependence are called anisotropic (see Section 5.2.7). 
 
 
6.3.1 Material Constants 
 
The most general form of Hooke’s law, the generalised Hooke’s Law, for a linear elastic 
material is  
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      (6.3.1) 

 
where each stress component depends (linearly) on all strain components.  This new 
notation, with only one subscript for the stress and strain, numbered from 1…6, is helpful 
as it allows the equations of anisotropic elasticity to be written in matrix form.  The 36 

s'ijC  are material constants called the stiffnesses, and in principle are to be obtained 

from experiment.  The matrix of stiffnesses is called the stiffness matrix.  Note that these 
equations imply that a normal stress xx  will induce a material element to not only stretch 

in the x direction and contract laterally, but to undergo shear strain too, as illustrated 
schematically in Fig. 6.3.1. 
 

 
 
Figure 6.3.1: an element undergoing shear strain when subjected to a normal stress 

only 
 
In section 8.4.3, when discussing the strain energy in an elastic material, it will be shown 
that it is necessary for the stiffness matrix to be symmetric and so there are only 21 
independent elastic constants in the most general case of anisotropic elasticity. 
 
Eqns. 6.3.1 can be inverted so that the strains are given explicitly in terms of the stresses: 
 

xxxx
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       (6.3.2) 

 
The s'ijS  here are called compliances, and the matrix of compliances is called the 

compliance matrix.  The bottom half of the compliance matrix has been omitted since it 
too is symmetric. 
 
It is difficult to model fully anisotropic materials due to the great number of elastic 
constants.  Fortunately many materials which are not fully isotropic still have certain 
material symmetries which simplify the above equations.  These material types are 
considered next. 
 
 
6.3.2 Orthotropic Linear Elasticity 
 
An orthotropic material is one which has three orthogonal planes of microstructural 
symmetry.  An example is shown in Fig. 6.3.2a, which shows a glass-fibre composite 
material.  The material consists of thousands of very slender, long, glass fibres bound 
together in bundles with oval cross-sections.  These bundles are then surrounded by a 
plastic binder material.  The continuum model of this composite material is shown in Fig. 
6.3.2b wherein the fine microstructural details of the bundles and surrounding matrix are 
“smeared out” and averaged.  Three mutually perpendicular planes of symmetry can be 
passed through each point in the continuum model.  The zyx ,,  axes forming these planes 
are called the material directions. 
 

 
 

Figure 6.3.2: an orthotropic material; (a) microstructural detail, (b) continuum 
model 
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The material symmetry inherent in the orthotropic material reduces the number of 
independent elastic constants.  To see this, consider an element of orthotropic material 
subjected to a shear strain  xy 6  and also a strain  xy  6 , as in Fig. 6.3.3. 

 

 
 

Figure 6.3.3: an element of orthotropic material undergoing shear strain 
 
From Eqns. 6.3.1, the stresses induced by a strain 6  only are 
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The stresses induced by a strain 6  only are (the prime is added to distinguish these 

stresses from those of Eqn. 6.3.3) 
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    (6.3.4) 

 
These stresses, together with the strain, are shown in Fig. 6.3.4 (the microstructure is also 
indicated) 
 

 
 

Figure 6.3.4: an element of orthotropic material undergoing shear strain; (a) 
positive strain, (b) negative strain 

 
Because of the symmetry of the material (print this page out, turn it over, and Fig. 6.3.4a 
viewed from the “other side” of the page is the same as Fig. 6.3.4b on “this side” of the 
page), one would expect the normal stresses in Fig. 6.3.4 to be the same, 11   , 
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22    , but the shear stresses to be of opposite sign, 66   .  Eqns. 6.3.3-4 then 

imply that 
 

05646362616  CCCCC         (6.3.5) 

 
Similar conclusions follow from considering shear strains in the other two planes: 
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The stiffness matrix is thus reduced, and there are only nine independent elastic constants: 
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   (6.3.7) 

 
These equations can be inverted to get, introducing elastic constants E,   and G  in place 
of the sSij ' : 
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The nine independent constants here have the following meanings: 
 

iE  is the Young’s modulus (stiffness) of the material in direction 3,2,1i ; for example, 

111  E  for uniaxial tension in the direction 1. 
 

ij  is the Poisson’s ratio representing the ratio of a transverse strain to the applied strain 

in uniaxial tension; for example, 1212 /   for uniaxial tension in the direction 1. 
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ijG  are the shear moduli representing the shear stiffness in the corresponding plane; for 

example, 12G  is the shear stiffness for shearing in the 1-2 plane. 
 
If the 1-axis has long fibres along that direction, it is usual to call 12G  and 13G  the axial 

shear moduli and 23G  the transverse (out-of-plane) shear modulus. 

 
Note that, from symmetry of the stiffness matrix, 
 

121212131313232323 ,, EEEEEE          (6.3.9) 

 
An important feature of the orthotropic material is that there is no shear coupling with 
respect to the material axes.  In other words, normal stresses result in normal strains only 
and shear stresses result in shear strains only. 
 
Note that there will in general be shear coupling when the reference axes used, zyx ,, , 
are not aligned with the material directions 3,2,1 .  For example, suppose that the yx   
axes were oriented to the material axes as shown in Fig. 6.3.5.  Assuming that the 
material constants were known, the stresses and strains in the constitutive equations 6.3.8 
can be transformed into xyxx  , , etc. and xyxx  , , etc. using the strain and stress 

transformation equations.  The resulting matrix equations relating the strains xyxx  ,  to 

the stresses xyxx  ,  will then not contain zero entries in the stiffness matrix, and normal 

stresses, e.g. xx , will induce shear strain, e.g. xy , and shear stress will induce normal 

strain. 
 

 
 

Figure 6.3.5: reference axes not aligned with the material directions 
 
 
6.3.3 Transversely Isotropic Linear Elasticity 
 
A transversely isotropic material is one which has a single material direction and whose 
response in the plane orthogonal to this direction is isotropic.  An example is shown in 
Fig. 6.3.6, which again shows a glass-fibre composite material with aligned fibres, only 
now the cross-sectional shapes of the fibres are circular.  The characteristic material 
direction is z  and the material is isotropic in any plane parallel to the yx   plane.  The 
material properties are the same in all directions transverse to the fibre direction. 
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Figure 6.3.6: a transversely isotropic material 
 
This extra symmetry over that inherent in the orthotropic material reduces the number of 
independent elastic constants further.  To see this, consider an element of transversely 
isotropic material subjected to a normal strain  xx 1  only of magnitude  , Fig. 

6.3.7a, and also a normal strain  yy 2  of the same magnitude,  , Fig. 6.3.7b.  The 

yx   plane is the plane of isotropy. 
 

 
 
Figure 6.3.7: elements of a transversely isotropic material undergoing normal strain 

in the plane of isotropy 
 
From Eqns. 6.3.7, the stresses induced by a strain  1  only are 
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The stresses induced by the strain  2  only are (the prime is added to distinguish these 
stresses from those of Eqn. 6.3.10) 
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Because of the isotropy, the )(1 xx   due to the 1  should be the same as the 

)(2 yy   due to the 2 , and it follows that 2211 CC  .  Further, the )(3 zz   should 

be the same for both, and so 3231 CC  . 
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Further simplifications arise from consideration of shear deformations, and rotations 
about the material axis, and one finds that 5544 CC   and 121166 CCC  . 

 
The stiffness matrix is thus reduced, and there are only five independent elastic constants: 
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with ‘3’ being the material direction.  These equations can be inverted to get, introducing 
elastic constants E,   and G  in place of the sSij ' . One again gets Eqn. 6.3.8, but now 
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with, due to symmetry, 
 

13 1 31 3/ /E E                                                  (6.3.15) 

 
Eqns. 6.3.13-15 seem to imply that there are 6 independent constants; however, the 
transverse modulus 12G  is related to the transverse Poisson ratio and the transverse 

stiffness through (see Eqn. 6.1.5, and 6.3.20 below, for the isotropic version of this 
relation) 
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These equations are often expressed in terms of “a” for fibre (or “a” for axial) and “t” for 
transverse: 
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6.3.4 Isotropic Linear Elasticity 
 
An isotropic material is one for which the material response is independent of orientation.  
The symmetry here further reduces the number of elastic constants to two, and the 
stiffness matrix reads  
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These equations can be inverted to get, introducing elastic constants E,   and G , 
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with 
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which are Eqns. 6.1.8 and 6.1.5. 
 
Eqns. 6.3.18 can also be written concisely in terms of the engineering constants E,   and 
G  with the help of the Lamé constants,   and  : 
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with 
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6.3.5 Problems 
 
1. A piece of orthotropic material is loaded by a uniaxial stress 1  (aligned with the 

material direction ‘1’).  What are the strains in the material, in terms of the 
engineering constants? 

 
2. A specimen of bone in the shape of a cube is fixed and loaded by a compressive stress 

MPa1  as shown below.  The bone can be considered to be orthotropic, with 
material properties 
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What are the stresses and strains which arise from the test according to this model (the 
bone is compressed along the ‘1’ direction)? 

 

 
 
3. Consider a block of transversely isotropic material subjected to a compressive stress 

p1  (perpendicular to the material direction) and constrained from moving in the 

other two perpendicular directions (as in Problem 2).  Evaluate the stresses 2  and 

3  in terms of the engineering constants ft EE ,  and ft  , . 

 
4. A strip of skin is tested in biaxial tension as shown below.  The measured stresses and 

strains are as given in the figure.  The orientation of the fibres in the material is later 
measured to be o20 .   

 
(a) Calculate the normal stresses along and transverse to the fibres, and the 

corresponding shear stress. (Hint: use the stress transformation equations.) 
(b) Calculate the normal strains along and transverse to the fibres, and the 

corresponding shear strain. (Hint: use the strain transformation equations.) 
(c) Assuming the material to be orthotropic, determine the elastic constants of the 

material (assume the stiffness in the fibre direction to be five times greater than 
the stiffness in the transverse direction). Note: because the material is thin, one 
can take 3 4 5 0     . 

(d) Calculate the magnitude and orientations of the principal normal stresses and 
strains. (Hint: the principal directions of stress are where there is zero shear 
stress.) 

(e) Do the principal directions of stress and strain coincide? 
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5. A biaxial test is performed on a roughly planar section of skin (thickness 1mm) from 
the back of a test-animal.  The test axes (x and y) are aligned such that deformation is 
induced in the skin along the spinal direction and transverse to this direction, under 
the assumption that the fibres are oriented principally in these directions.  However, it 
is found during the experiment that shear stresses are necessary to maintain a biaxial 
deformation state.  Measured stresses are 

kPa1,kPa2,kPa5  xyyyxx   

Determine the in-plane orientation of the fibres given the data kPa10001 E , 

kPa5002 E , kPa5006 G , 2.021  . 

[Hint: derive an expression for xy  involving   only, where   is the inclination of 

the material axes from the yx   axes] 
 
 
 
 
 
 
 
 


