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6.1 The Linear Elastic Model 
 
 
6.1.1 The Linear Elastic Model 
 
Repeating some of what was said in Section 5.3: the Linear Elastic model is used to 
describe materials which respond as follows: 

(i) the strains in the material are small1 (linear) 
(ii) the stress is proportional to the strain,    (linear) 
(iii) the material returns to its original shape when the loads are removed, and the 

unloading path is the same as the loading path (elastic) 
(iv) there is no dependence on the rate of loading or straining (elastic) 

 
From the discussion in the previous chapter, this model well represents the engineering 
materials up to their elastic limit.  It also models well almost any material provided the 
stresses are sufficiently small. 
 
The stress-strain (loading and unloading) curve for the Linear Elastic solid is shown in 
Fig. 6.1.1a.  Other possible responses are shown in Figs. 6.1.1b,c.  Fig. 6.1.1b shows the 
typical response of a rubbery-type material and many biological tissues; these are non-
linear elastic materials.  Fig. 6.1.1c shows the typical response of viscoelastic materials 
(see Chapter 10) and that of many plastically and viscoplastically deforming materials 
(see Chapters 11 and 12). 
 

 
 

Figure 6.1.1: Different stress-strain relationships; (a) linear elastic, (b) non-linear 
elastic, (c) viscoelastic/plastic/viscoplastic 

 
It will be assumed at first that the material is isotropic and homogeneous.  The case of an 
anisotropic elastic material is discussed in Section 6.3. 
 
 
 
 
 

                                                 
1 if the small-strain approximation is not made, the stress-strain relationship will be inherently non-linear; 
the actual strain, Eqn. 4.1.7, involves (non-linear) squares and square-roots of lengths  
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6.1.2 Stress-Strain Law 
 
Consider a cube of material subjected to a uniaxial tensile stress xx , Fig. 6.1.2a.  One 

would expect it to respond by extending in the x direction, 0xx , and to contract 

laterally, so 0 zzyy  , these last two being equal because of the isotropy of the 

material.  With stress proportional to strain, one can write 
 

xxzzyyxxxx EE
  ,

1
        (6.1.1) 

 

 
 
Figure 6.1.2: an element of material subjected to a uniaxial stress; (a) normal strain, 

(b) shear strain 
 
The constant of proportionality between the normal stress and strain is the Young’s 
Modulus, Eqn. 5.2.5, the measure of the stiffness of the material.  The material parameter 
  is the Poisson’s ratio, Eqn. 5.2.6.  Since xxzzyy   , it is a measure of the 

contraction relative to the normal extension. 
 
Because of the isotropy/symmetry of the material, the shear strains are zero, and so the 
deformation of Fig. 6.1.2b, which shows a non-zero xy , is not possible – shear strain can 

arise if the material is not isotropic. 
 
One can write down similar expressions for the strains which result from a uniaxial 
tensile yy  stress and a uniaxial zz  stress: 
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Similar arguments can be used to write down the shear strains which result from the 
application of a shear stress: 
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The constant of proportionality here is the Shear Modulus  , Eqn. 5.2.8, the measure of 
the resistance to shear deformation (the letter G was used in Eqn. 5.2.8 – both G and   
are used to denote the Shear Modulus, the latter in more “mathematical” and “advanced” 
discussions) . 
 
The strain which results from a combination of all six stresses is simply the sum of the 
strains which result from each2: 
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 (6.1.4) 

 
These equations involve three material parameters.  It will be proved in §6.3 that an 
isotropic linear elastic material can have only two independent material parameters and 
that, in fact,  
 

 



12

E
.     (6.1.5) 

 
This relation will be verified in the following example. 
 
Example: Verification of Eqn. 6.1.5 
 
Consider the simple shear deformation shown in Fig. 6.1.3, with 0xy  and all other 

strains zero.  With the material linear elastic, the only non-zero stress is xyxy  2 .   

 

  
Figure 6.1.3: a simple shear deformation 

 

                                                 
2 this is called the principle of linear superposition: the "effect" of a sum of "causes" is equal to the sum 
of the individual "effects" of each "cause".  For a linear relation, e.g. E  , the effects of two causes  

,1 2   are 1E  and 2E , and the effect of the sum of the causes 1 2   is indeed equal to the sum of the 

individual effects: 1 2 1 2( )E E E     .  This is not true of a non-linear relation, e.g. 2E  , since 
2 2 2
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Using the strain transformation equations, Eqns. 4.2.2, the only non-zero strains in a 
second coordinate system yx  , with x  at o45  from the x axis (see Fig. 6.1.3), are 

xyxx    and xyyy   .  Because the material is isotropic, Eqns 6.1.4 hold also in this 

second coordinate system and so the stresses in the new coordinate system can be 
determined by solving the equations 
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   (6.1.6) 

 
which results in 
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But the stress transformation equations, Eqns. 3.4.8, with xyxy  2 , give 

xyxx  2  and xyyy  2  and so Eqn. 6.1.5 is verified. 

■ 
 
Relation 6.1.5 allows the Linear Elastic Solid stress-strain law, Eqn. 6.1.4, to be written 
as 
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   Stress-Strain Relations     (6.1.8) 

 
This is known as Hooke’s Law.  These equations can be solved for the stresses to get 
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    Stress-Strain Relations    (6.1.9)  

 
Values of E and   for a number of materials are given in Table 6.1.1 below (see also 
Table 5.2.2). 
 

 
Table 6.1.1: Young’s Modulus E and Poisson’s Ratio ν for a selection of materials at 

20oC 
 
 
Volume Change 
 
Recall that the volume change in a material undergoing small strains is given by the sum 
of the normal strains (see Section 4.3).  From Hooke’s law, normal stresses cause normal 
strain and shear stresses cause shear strain.  It follows that normal stresses produce 
volume changes and shear stresses produce distortion (change in shape), but no volume 
change. 
 
 
6.1.3 Two Dimensional Elasticity 
 
The above three-dimensional stress-strain relations reduce in the case of a two-
dimensional stress state or a two-dimensional strain state. 
 

Material E (GPa) 
Grey Cast Iron 100 0.29
A316 Stainless Steel 196 0.3
A5 Aluminium 68 0.33
Bronze 130 0.34
Plexiglass 2.9 0.4
Rubber 0.001-2 0.4-0.49
Concrete 23-30 0.2
Granite 53-60 0.27
Wood (pinewood)
fibre direction 
transverse direction 

17
1

0.45
0.79
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Plane Stress 
 
In plane stress (see Section 3.5), 0 zzyzxz  , Fig. 6.1.5, so the stress-strain 

relations reduce to 
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 Stress-Strain Relations (Plane Stress)   (6.1.10) 
 
with 
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Figure 6.1.5: Plane stress 
 
Note that the zz  strain is not zero.  Physically, zz  corresponds to a change in thickness 
of the material perpendicular to the direction of loading. 
 
Plane Strain 
 
In plane strain (see Section 4.2), 0 zzyzxz  , Fig. 6.1.6, and the stress-strain 

relations reduce to 
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Stress-Strain Relations (Plane Strain)   (6.1.12) 
 
with 
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Again, note here that the stress component zz  is not zero.  Physically, this stress 
corresponds to the forces preventing movement in the z direction. 
 

 
 

Figure 6.1.6 Plane strain - a thick component constrained in one direction 
 
 
Similar Solutions 
 
The expressions for plane stress and plane strain are very similar.  For example, the plane 
strain constitutive law 6.1.12 can be derived from the corresponding plane stress 
expressions 6.1.10 by making the substitutions  
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in 6.1.10 and then dropping the primes.  The plane stress expressions can be derived from 
the plane strain expressions by making the substitutions  
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in 6.1.12 and then dropping the primes.  Thus, if one solves a plane stress problem, one 
has automatically solved the corresponding plane strain problem, and vice versa. 
 
 
6.1.4 Problems 
 
1. A strain gauge at a certain point on the surface of a thin A5 Aluminium component 

(loaded in-plane) records strains of μm15μm,30μm,60  xyyyxx   .  

Determine the principal stresses.  (See Table 6.1.1 for the material properties.) 
 
2. Use the stress-strain relations to prove that, for a linear elastic solid,  
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Note: from Eqns. 3.5.4 and 4.2.4, these show that the principal axes of stress and 
strain coincide for an isotropic elastic material 
 

3. Consider the case of hydrostatic pressure in a linearly elastic solid: 
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as might occur, for example, when a spherical component is surrounded by a fluid 
under high pressure, as illustrated in the figure below.  Show that the volumetric strain 
(Eqn. 4.3.5) is equal to 
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so that the Bulk Modulus, Eqn. 5.2.9, is 
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4. Consider again Problem 2 from §3.5.7.   

(a) Assuming the material to be linearly elastic, what are the strains?  Draw a second 
material element (superimposed on the one shown below) to show the deformed 
shape of the square element – assume the displacement of the box-centre to be 
zero and that there is no rotation.  Note how the free surface moves, even though 
there is no stress acting on it. 
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(b) What are the principal strains 1  and 2 ?  You will see that the principal 
directions of stress and strain coincide (see Problem 2) – the largest normal stress 
and strain occur in the same direction. 

 
 
5. Consider a very thin sheet of material subjected to a normal pressure p on one of its 

large surfaces.  It is fixed along its edges.  This is an example of a plate problem, an 
important branch of elasticity with applications to boat hulls, aircraft fuselage, etc. 
(a) write out the complete three dimensional stress-strain relations (both cases, strain 

in terms of stress, Eqns. 6.1.8, stress in terms of strain, Eqns. 6.1.9). Following the 
discussion on thin plates in section 3.5.4, the shear stresses yzxz  , , can be taken 

to be zero throughout the plate. Simplify the relations using this fact, the pressure 
boundary condition on the large face and the coordinate system shown. 

(b) assuming that the through thickness change in the sheet can be neglected, show 
that 

 yyxxp    

 

 
 

6. A thin linear elastic rectangular plate with width a and height b is subjected to a 
uniform compressive stress 0  as shown below.  Show that the slope of the plate 

diagonal shown after deformation is given by 
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What is the magnitude of   for a steel plate ( GPa210E , 3.0 ) of dimensions 
2cm2020  with MPa10  ? 
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