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3 Stress 
 
Forces acting at the surfaces of components were considered in the previous chapter.  The 
task now is to examine forces arising inside materials, internal forces.  Internal forces are 
described using the idea of stress.  There is a lot more to stress than the notion of “force 
over area”, as will become clear in this chapter.  First, the idea of surface (contact) stress 
distributions will be examined, together with their relationship to resultant forces and 
moments.  Then internal stress and traction will be discussed.  The means by which 
internal forces are described is through the stress components, for example yyzx  , , and 

this “language” of sigmas and subscripts needs to be mastered in order to model sensibly 
the internal forces in real materials.  Stress analysis involves representing the actual 
internal forces in a real physical component mathematically.  Some of the limitations of 
this are discussed in §3.3.2. 
 
Newton’s laws are used to derive the stress transformation equations, and these are 
then used to derive expressions for the principal stresses, stress invariants, principal 
directions and maximum shear stresses acting at a material particle.  The practical case 
of two dimensional plane stress is discussed. 
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3.1 Surface and Contact Stress 
 
The concept of the force is fundamental to mechanics and many important problems 
can be cast in terms of forces only, for example the problems considered in Chapter 2.  
However, more sophisticated problems require that the action of forces be described 
in terms of stress, that is, force divided by area.  For example, if one hangs an object 
from a rope, it is not the weight of the object which determines whether the rope will 
break, but the weight divided by the cross-sectional area of the rope, a fact noted by 
Galileo in 1638. 
 
 
3.1.1 Stress Distributions 
 
As an introduction to the idea of stress, consider the situation shown in Fig. 3.1.1a: a 
block of mass m and cross sectional area A sits on a bench.  Following the 
methodology of Chapter 2, an analysis of a free-body of the block shows that a force 
equal to the weight mg  acts upward on the block, Fig. 3.1.1b.  Allowing for more 
detail now, this force will actually be distributed over the surface of the block, as 
indicated in Fig. 3.1.1c.  Defining the stress to be force divided by area, the stress 
acting on the block is 
 

A

mg
            (3.1.1) 

 
The unit of stress is the Pascal (Pa): 1Pa is equivalent to a force of 1 Newton acting 
over an area of 1 metre squared.  Typical units used in engineering applications are 
the kilopascal, kPa ( Pa103 ), the megapascal, MPa ( Pa106 ) and the gigapascal, GPa 

( Pa109 ). 
 

 
 

Figure 3.1.1: a block resting on a bench; (a) weight of the block, (b) reaction of 
the bench on the block, (c) stress distribution acting on the block 

 
The stress distribution of Fig. 3.1.1c acts on the block.  By Newton’s third law, an 
equal and opposite stress distribution is exerted by the block on the bench; one says 
that the weight force of the block is transmitted to the underlying bench. 
 
The stress distribution of Fig. 3.1.1 is uniform, i.e. constant everywhere over the 
surface.  In more complex and interesting situations in which materials contact, one is 
more likely to obtain a non-uniform distribution of stress.  For example, consider the 
case of a metal ball being pushed into a similarly stiff object by a force F, as 

mg

(a) (c)

mg

(b)
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illustrated in Fig. 3.1.2.1  Again, an equal force F acts on the underside of the ball, 
Fig. 3.1.2b.  As with the block, the force will actually be distributed over a contact 
region.  It will be shown in Part II that the ball (and the large object) will deform and 
a circular contact region will arise where the ball and object meet2, and that the stress 
is largest at the centre of the contact surface, dying away to zero at the edges of 
contact, Fig. 3.1.2c ( 21    in Fig. 3.1.2c).  In this case, we can consider a small 
area of the contact region dA , Fig. 3.1.2d; the force on this region is dA . The total 
force is 
 

A A

F dF dA                 (3.1.2) 

 
The stress varies from point to point over the surface but the sum (or integral) of the 
stresses (times areas) equals the total force applied to the ball. 
 

 
 
Figure 3.1.2: a ball being forced into a large object, (a) force applied to ball, (b) 

reaction of object on ball, (c) a non-uniform stress distribution over the 
contacting surface, (d) the stress acting on a small (infinitesimal) area 

 
A given stress distribution gives rise to a resultant force, which is obtained by 
integration, Eqn. 3.1.2.  It will also give rise to a resultant moment.  This is examined 
in the following example. 
 
Example 
 
Consider the surface shown in Fig. 3.1.3, of length 2m and depth 2m (into the page).  
The stress over the surface is given by x  kPa, with x measured in m from the left-
hand side of the surface. 
 
The force acting on an element of length dx  at position x is (see Fig. 3.1.3b) 
 

   kPa m 2 mdF dA x dx     

 
The resultant force is then, from Eqn. 3.1.2 

                                                 
1 the weight of the ball is neglected here 
2 the radius of which depends on the force applied and the materials in contact 

1
2

F

(a) (c)

F

(b)

F
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  kN4mkPa2 2
2

0

  xdxdFF
A

 

 
The moment of the stress distribution is given by 
 

 
AA

dAldMM 0                                           (3.1.3) 

 
where l is the length of the moment-arm from the chosen axis. 
 
Taking the axis to be at 0x , the moment-arm is xl  , Fig. 3.1.3b, and 
 

  mkN
3

16
mkPa2 3

2

0

0   dxxxdMM
A

x  

 
Taking moments about the right-hand end, 2x , one has 
 

    mkN
3

8
mkPa22 3

2

0

2   dxxxdMM
A

x  

 

 
 

Figure 3.1.3: a non-uniform stress acting over a surface; (a) the stress 
distribution, (b) stress acting on an element of size dx  

 
■ 

 
 
3.1.2 Equivalent Forces and Moments 
 
Sometimes it is useful to replace a stress distribution   with an equivalent force F, 
i.e. a force equal to the resultant force of the distribution and one which also gives the 
same moment about any axis as the distribution.  Formulae for equivalent forces are 
derived in what follows for triangular and arbitrary linear stress distributions. 
 
 
 
Triangular Stress Distribution 
 

x

m2

)(x

dx

)(xx

(a) (b)
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Consider the triangular stress distribution shown in Fig. 3.1.4.  The stress at the end is 

0 , the length of the distribution is L and the thickness “into the page” is t.  With 

0( ) /x x L  , the equivalent force is, from Eqn. 3.1.2, 

 

Ltdx
L

x
tF

L

0

0

0 2

1                                             (3.1.4) 

 
which is just the average stress times the “area of the triangle”.  The point of action of 
this force should be such that the moment of the force is equivalent to the moment of 
the stress distribution.  Taking moments about the left hand end, for the distribution 
one has, from 3.1.3, 
 

tLdxxxtM
L

2
0

0

o 3

1
)(     

 
Placing the force at position cxx  , Fig. 3.1.4, the moment of the force is 

  cxLtM 2/0o  .  Equating these expressions leads to the position at which the 

equivalent force acts, two-thirds the way along the triangle: 
 

Lxc 3

2
 .                                                   (3.1.5) 

 

 
 

Figure 3.1.4: triangular stress distribution and equivalent force 
 
Note that the moment about any axis is now the same for both the stress distribution 
and the equivalent force. 

■ 
 
Arbitrary Linear Stress Distribution 
 
Consider the linear stress distribution shown in Fig. 3.1.5.  The stress at the ends are 

1  and 2  and this time the equivalent force is  
 

    2/)/)(( 21

0

121    LtdxLxtF
L

                 (3.1.6) 

 
Taking moments about the left hand end, for the distribution one has 

0

L

o

equivalent force
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  6/2)( 21
2

0

o    tLdxxxtM
L

. 

 
The moment of the force is   2/21o cxLtM   .  Equating these expressions leads 

to 
 

 
 21

21

3

2








L

xc                                                (3.1.7) 

 
Eqn. 3.1.5 follows from 3.1.7 by setting 01  . 
 

 
 

Figure 3.1.5: a non-uniform stress distribution and equivalent force 
 

■ 
 
The Centroid 
 
Generalising the above cases, the line of action of the equivalent force for any 
arbitrary stress distribution )(x  is 
 

F

dFx

dxxt

dxxxt
xc



 

)(

)(




 Centroid       (3.1.8) 

 
This location is known as the centroid of the distribution. 
 
Note that most of the discussion above is for two-dimensional cases, i.e. the stress is 
assumed constant “into the page”.  Three dimensional problems can be tackled in the 
same way, only now one must integrate two-dimensionally over a surface rather than 
one-dimensionally over a line. 
 
Also, the forces considered thus far are normal forces, where the force acts 
perpendicular to a surface, and they give rise to normal stresses.  Normal stresses are 
also called pressures when they are compressive as in Figs. 3.1.1-2. 
 
 

1
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L

o
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3.1.3 Shear Stress 
 
Consider now the case of shear forces, that is, forces which act tangentially to 
surfaces. 
 
A normal force F acts on the block of Fig. 3.1.6a.  The block does not move and, to 
maintain equilibrium, the force is resisted by a friction force mgF  , where   is 
the coefficient of friction.  A free body diagram of the block is shown in Fig. 3.1.6b.  
Assuming a uniform distribution of stress, the stress and resultant force arising on the 
surfaces of the block and underlying object are as shown.  The stresses are in this case 
called shear stresses. 
 

 
 
Figure 3.1.6: shear stress; (a) a force acting on a block, (b) shear stresses arising 

on the contacting surfaces 
 
 
3.1.4 Combined Normal and Shear Stress 
 
Forces acting inclined to a surface are most conveniently described by decomposing 
the force into components normal and tangential to the surface.  Then one has both 
normal stress N  and shear stress S , as in Fig. 3.1.7. 

 

 
 
Figure 3.1.7: a force F giving rise to normal and shear stress over the contacting 

surfaces 
 
The stresses considered in this section are examples of surface stresses or contact 
stresses.  They arise when materials meet at a common surface.  Other examples 
would be sea-water pressurising a gas cylinder in deep water and the stress exerted by 
a train wheel on a train track. 
 
 

F

(a) (b)

F
F

F
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3.1.5 Problems 
 
1. Consider the surface shown below, of length 4cm and unit depth (1cm into the 

page).  The stress over the surface is given by x 2  kPa, with x measured in 
cm from the surface centre. 
(a) Evaluate the resultant force acting on the surface (in Newtons). 
(b) What is the moment about an axis (into the page) through the left-hand end of 

the surface? 
(c) What is the moment about an axis (into the page) through the centre of the 

surface? 
 

 
 

2. Consider the surface shown below, of length 4mm and unit depth (1mm into the 
page).  The stress over the surface is given by x  MPa, with x measured from 
the surface centre, i.e. x  mm corresponds to x  MPa.  What is the total force 
acting on the surface, and the moment acting about the centre of the surface? 

 

 
 
3. Find the reaction forces (per unit length) at the pin and roller for the following 

beam, which is subjected to a varying pressure distribution, the maximum 
pressure being kPa20)( x  (all lengths are in cm – give answer in N/m) 
[Hint: first replace the stress distribution with three equivalent forces] 
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4. A block of material of width 10cm and length 1m is pushed into an underlying 
substrate by a normal force of 100 N.  It is found that a uniform triangular normal 
stress distribution arises at the contacting surfaces, that is, the stress is maximum 
at the centre and dies off linearly to zero at the block edges, as sketched  below 
right.  What is the maximum pressure acting on the surface? 

 

 
 
 



N100

cm10

1m

typical cross-
section 

stress 
distribution



Section 3.2 

Solid Mechanics Part I                                                                                Kelly 39

3.2 Body Forces 
 
Surface forces act on surfaces.  As discussed in the previous section, these are the forces 
which arise when bodies are in contact and which give rise to stress distributions.  Surface 
forces also arise inside materials, acting on internal surfaces, Fig. 3.2.1a, as will be 
discussed in the following section. 
 
To complete the description of forces acting on real materials, one needs to deal with 
forces which arise even when bodies are not in contact; one can think of these forces as 
acting at a distance, for example the force of gravity.  To describe these forces, one can 
define the body force, which acts on volume elements of material.  Fig. 3.2.1b shows a 
sketch of a volume element subjected to a magnetic body force and a gravitational body 
force gF . 

 

 
 
Figure 3.2.1: forces acting on a body; (a) surface forces acting on surfaces, (b) body 

forces acting on a material volume element 
 
 
3.2.1 Weight 
 
The most important body force is the force due to gravity, i.e. the weight force.  In 
Chapter 2 there were examples involving the weight of components.  In those cases it was 
simply stated that the weight could be taken to be a single force acting at the component 
centre (for example, Problem 3 in §2.2.3).  This is true when the component is 
symmetrical, for example, in the shape of a circle or a square.  However, it is not true in 
general for a component of arbitrary shape. 
 
In what follows, the important case of a flat object of arbitrary shape will be examined. 
 
The weight of a small volume element V  of material of density   is VgdF    and 
the total weight is 
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dVgF
V
                                                       (3.2.1) 

 
Consider the general two-dimensional case, Fig. 3.2.2, where material elements of area 

iA  (and constant thickness t) are subjected to forces ii AgtF   . 

 

 
 

Figure 3.2.2: Resultant Weight on a body 
 
The resultant, i.e. equivalent, weight force due to all elements, for a component with 
uniform density, is  
 

gtAdAgtdFF    , 

 
where A is the cross-sectional area. 
 
The resultant moments about the x and y axes, which can be positioned anywhere in the 

body, are  ydAgtM x   and  xdAgtM y   respectively; the moment xM  is shown 

in Fig. 3.2.3.  The equivalent weight force is thus positioned at ),( cc yx , Fig. 3.2.2, where 

 

A

ydA
y

A

xdA
x cc

  ,  Centroid of Area    (3.2.2) 

 

The position ),( cc yx  is called the centroid of the area.  The quantities  xdA ,  ydA , are 

called the first moments of area about, respectively, the y and x axes. 
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Figure 3.2.3: The moment Mx; (a) full view, (b) plane view 
 
 
 
 
3.2.2 Problems 
 
 
1. Where does the resultant force due to gravity act in the triangular component shown 

below?  (Gravity acts downward in the direction of the arrow shown, perpendicular to 
the component’s surface.)  
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3.3 Internal Stress 
 
The idea of stress considered in §3.1 is not difficult to 
conceptualise since objects interacting with other objects are 
encountered all around us.  A more difficult concept is the 
idea of forces and stresses acting inside a material, “within 
the interior where neither eye nor experiment can reach” as 
Euler put it.  It took many great minds working for centuries 
on this question to arrive at the concept of stress we use 
today, an idea finally brought to us by Augustin Cauchy, 
who presented a paper on the subject to the Academy of 
Sciences in Paris, in 1822. 

       Augustin Cauchy  
 
3.3.1 Cauchy’s Concept of Stress 
 
Uniform Internal Stress 
 
Consider first a long slender block of material subject to equilibrating forces F at its ends, 
Fig. 3.3.1a.  If the complete block is in equilibrium, then any sub-division of the block 
must be in equilibrium also.  By imagining the block to be cut in two, and considering 
free-body diagrams of each half, as in Fig. 3.3.1b, one can see that forces F must be 
acting within the block so that each half is in equilibrium.  Thus external loads create 
internal forces; internal forces represent the action of one part of a material on another 
part of the same material across an internal surface.  We can take it that a uniform stress 

AF /  acts over this interior surface, Fig. 3.3.1b. 
 

 
 

Figure 3.3.1: a slender block of material; (a) under the action of external forces F, 
(b) internal normal stress σ, (c) internal normal and shear stress 
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Note that, if the internal forces were not acting over the internal surfaces, the two half-
blocks of Fig. 3.3.1b would fly apart; one can thus regard the internal forces as those 
required to maintain material in an un-cut state.  
 
If the internal surface is at an incline, as in Fig. 3.3.1c, then the internal force required for 
equilibrium will not act normal to the surface.  There will be components of the force 
normal and tangential to the surface, and thus both normal ( N ) and shear ( S ) stresses 

must arise.  Thus, even though the material is subjected to a purely normal load, internal 
shear stresses develop. 
 
From Fig. 3.3.2a, with the stress given by force divided by area, the normal and shear 
stresses arising on an interior surface inclined at angle   to the horizontal are 
{▲Problem 1} 
 

 cossin,cos2

A

F

A

F
SN         (3.3.1) 

 

 
 

Figure 3.3.2: stress on inclined surface; (a) decomposing the force into normal and 
shear forces, (b) stress at an internal point 

 
Although stress is associated with surfaces, one can speak of the stress “at a point”.  For 
example, consider some point interior to the block, Fig 3.3.2b.  The stress there evidently 
depends on which surface through that point is under consideration.  From Eqn. 3.3.1a, 
the normal stress at the point is a maximum AF /  when 0  and a minimum of zero 
when o90 .  The maximum normal stress arising at a point within a material is of 
special significance, for example it is this stress value which often determines whether a 
material will fail (“break”) there.  It has a special name: the maximum principal stress.  
From Eqn. 3.3.1b, the maximum shear stress at the point is AF 2/  and arises on 
surfaces inclined at o45 . 
 
Non-Uniform Internal Stress 
 
Consider a more complex geometry under a more complex loading, as in Fig. 3.3.3.  
Again, using equilibrium arguments, there will be some stress distribution acting over any 
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given internal surface.  To evaluate these stresses is not a straightforward matter, suffice 
to say here that they will invariably be non-uniform over a surface, that is, the stress at 
some particle will differ from the stress at a neighbouring particle. 
 

 
 

Figure 3.3.3: a component subjected to a complex loading, giving rise to a non-
uniform stress distribution over an internal surface 

 
Traction and the Physical Meaning of Internal Stress 
 
All materials have a complex molecular microstructure and each molecule exerts a force 
on each of its neighbours.  The complex interaction of countless molecular forces 
maintains a body in equilibrium in its unstressed state.  When the body is disturbed and 
deformed into a new equilibrium position, net forces act, Fig. 3.3.4a.  An imaginary plane 
can be drawn through the material, Fig. 3.3.4b.  Unlike some of his predecessors, who 
attempted the extremely difficult task of accounting for all the molecular forces, Cauchy 
discounted the molecular structure of matter and simply replaced the imagined molecular 
forces acting on the plane by a single force F, Fig 3.3.4c.  This is the force exerted by the 
molecules above the plane on the material below the plane and can be attractive or 
repulsive.  Different planes can be taken through the same portion of material and, in 
general, a different force will act on the plane, Fig 3.3.4d. 
 

 
 

Figure 3.3.4: a multitude of molecular forces represented by a single force; (a) 
molecular forces, a plane drawn through the material, replacing the molecular 

forces with an equivalent force F, a different equivalent force F acts on a different 
plane through the same material 

 
The definition of stress will now be made more precise.  First, define the traction at some 
particular point in a material as follows: take a plane of surface area S through the point, 
on which acts a force F.  Next shrink the plane – as it shrinks in size both S and F get 
smaller, and the direction in which the force acts may change, but eventually the ratio 

SF /  will remain constant and the force will act in a particular direction, Fig. 3.3.5.  The 
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limiting value of this ratio of force over surface area is defined as the traction vector (or 
stress vector) t:1 
 

           
S

F
S 




 0
limt      (3.3.2) 

 

 
 
Figure 3.3.5: the traction vector - the limiting value of force over area, as the surface 

area of the element on which the force acts is shrunk 
 
An infinite number of traction vectors act at any single point, since an infinite number of 
different planes pass through a point.  Thus the notation SFS  /lim 0  is ambiguous.  

For this reason the plane on which the traction vector acts must be specified; this can be 
done by specifying the normal n to the surface on which the traction acts, Fig 3.3.6.  The 
traction is thus a special vector – associated with it is not only the direction in which it 
acts but also a second direction, the normal to the plane upon which it acts. 
 

 
 

Figure 3.3.6: two different traction vectors acting at the same point 
 

                                                 
1 this does not mean that the force is acting on a surface of zero area – the meaning of this limit is further 
examined in section 5.4, in the context of the continuum 
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Stress Components 
 
The traction vector can be decomposed into components which act normal and parallel to 
the surface upon which it acts.  These components are called the stress components, or 
simply stresses, and are denoted by the symbol  ; subscripts are added to signify the 
surface on which the stresses act and the directions in which the stresses act. 
 
Consider a particular traction vector acting on a surface element.  Introduce a Cartesian 
coordinate system with base vectors kji ,,  so that one of the base vectors is a normal to 
the surface, and the origin of the coordinate system is positioned at the point at which the 
traction acts.  For example, in Fig. 3.3.7, the k  direction is taken to be normal to the 
plane, and kjit k

zyx ttt )( .  

 

 
 

Figure 3.3.7: the components of the traction vector 
 
Each of these components it  is represented by ij   where the first subscript denotes the 

direction of the normal to the plane and the second denotes the direction of the 
component.  Thus, re-drawing Fig. 3.3.7 as Fig. 3.3.8: kjit k

zzzyzx  )( .  The first 

two stresses, the components acting tangential to the surface, are shear stresses, whereas 

zz , acting normal to the plane, is a normal stress2. 
 

 
 

Figure 3.3.8: stress components – the components of the traction vector 
 

                                                 
2 this convention for the subscripts is not universally followed.  Many authors, particularly in the 
mathematical community, use the exact opposite convention, the first subscript to denote the direction and 
the second to denote the normal.  It turns out that both conventions are equivalent, since, as will be shown 
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The traction vector shown in Figs. 3.3.7, 3.3.8, represents the force (per unit area) exerted 
by the material above the surface on the material below the surface.  By Newton’s third 
law, an equal and opposite traction must be exerted by the material below the surface on 
the material above the surface, as shown in Fig. 3.3.9 (thick dotted line).  If )(kt  has stress 
components , ,zx zy zz   , then so should )( kt  : ( ) ( )( ) ( ) ( )zx zy zz          k kt i j k t . 

 

 
 

Figure 3.3.9: equal and opposite traction vectors – each with the same stress 
components 

 
 
Sign Convention for Stress Components 
 
The following convention is used: 

 
The stress is positive when the direction of the normal and the direction of 

the stress component are both positive or both negative 
The stress is negative when one of the directions is positive and the other is 

negative 
 
According to this convention, the three stresses in Figs. 3.3.7-9 are all positive. 
 
Looking at the two-dimensional case for ease of visualisation, the (positive and negative) 
normal stresses and shear stresses on either side of a surface are as shown in Fig. 3.3.10. 
To clarify this, consider the yy  stress in Fig. 3.310a: “above” the plane, the normal to 

the plane is in the positive y direction (up) and the component yy  acts in the positive 

direction (up), so this stress is positive; “below” the plane, the normal to the plane is in 
the negative y direction (down) and the component yy  acts in the negative direction 

(down), so this stress is positive. The simple consequence of this sign convention is that 
normal stresses which “pull” (tension) are positive and normal stresses which “push” 
(compression) are negative.  Note that the shear stresses always go in opposite directions. 
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Figure 3.3.10: stresses acting on either side of a material surface: (a) positive 
stresses, (b) negative stresses 

 
 
Examples of negative stresses are shown in Fig. 3.3.11 {▲Problem 4}. 
 

 
 

Figure 3.3.11: examples of negative stress components 
 
 
3.3.2 Real Problems and Saint-Venant’s Principle 
 
Some examples have been given earlier of external forces acting on materials.  In reality, 
an external force will be applied to a real material component in a complex way.  For 
example, suppose that a block of material, welded to a large object at one end, is pulled at 
its other end by a rope attached to a metal hoop, which is itself attached to the block by a 
number of bolts, Fig. 3.3.12a.  The block can be idealised as in Fig 3.3.12b; here, the 
precise details of the region in which the external force is applied are neglected. 
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Figure 3.3.12: a block subjected to an external force: (a) real case, (b) ideal model, 
(c) stress in ideal model, (d) stress in actual material, (e) the stress in the real 
material, away from the right hand end, is modelled well by either (f) or (g) 

 
According to the earlier discussion, the stress in the ideal model is as in Fig. 3.3.12c.  One 
will find that, in the real material, the stress is indeed (approximately) as predicted, but 
only at an appreciable distance from the right hand end.  Near where the rope is attached, 
the force will differ considerably, as sketched in Fig.3.3.12d. 
 
Thus the ideal models of the type discussed in this section, and in much of this book, are 
useful only in predicting the stress field in real components in regions away from points 
of application of loads.  This does not present too much of a problem, since the stresses 
internal to a structure in such regions are often of most interest.  If one wants to know 
what happens near the bolted connection, then one will have to create a complex model 
incorporating all the details and the problem will be more difficult to solve. 
 
That said, it is an experimental fact that if two different force systems are applied to a 
material, but they are equivalent force systems, as in Fig. 3.3.12(f,g), then the stress fields 
in regions away from where the loads are applied will be the same.  This is known as 
Saint-Venant’s Principle.  Typically, one needs to move a distance away from where the 
loads are applied roughly equal to the distance over which the loads are applied. 
 
Saint-Venant’s principle is extremely important in practical applications: we can replace a 
complicated problem by a simple model problem; the solution to this latter problem will 
often give us the information we require. 
 
 
3.3.3 Problems 
 
1. Derive Eqns. 3.3.1. 
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2. The four sides of a square block are subjected to equal forces S, as illustrated.  The 
length of each side is l and the block has unit depth (into the page).  What normal and 
shear stresses act along the (dotted) diagonal? [Hint: draw a free body diagram of the 
upper left hand triangle.] 

 
3. A shaft is concreted firmly into the ground.  A thick steel rope is looped around the 

shaft and a force is applied normal to the shaft, as shown.  The shaft is in static 
equilibrium.  Draw a free body diagram of the shaft (from the top down to ground 
level) showing the forces/moments acting on the shaft (including the reaction forces at 
the ground-level; ignore the weight of the shaft).  Draw a free body diagram of the 
section of shaft from the top down to the cross section at A.  Draw a free body 
diagram of the section of shaft from the top to the cross section at B.  Roughly sketch 
the stresses acting over the (horizontal) internal surfaces of the shaft at A and B. 

 

 
4. In Fig. 3.3.11, which of the stress components is/are negative? 

 
5. Label the following stress component acting on an internal material surface.  Is it a 

positive or negative stress? 
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6. Label the following shear stresses.  Are they positive or negative? 
 

 
 
7. Label the following normal stresses.  Are they positive or negative? 
 

 
 
8. By the definition of the traction vector t which acts on the x z  plane, 

( )
yx yy yz    jt i j k .  Sketch these three stress components on the figure below. 
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3.4 Equilibrium of Stress 
 
Consider two perpendicular planes passing through a point p.  The stress components 
acting on these planes are as shown in Fig. 3.4.1a.  These stresses are usually shown 
together acting on a small material element of finite size, Fig. 3.4.1b.  It has been seen 
that the stress may vary from point to point in a material but, if the element is very small, 
the stresses on one side can be taken to be (more or less) equal to the stresses acting on 
the other side.  By convention, in analyses of the type which will follow, all stress 
components shown are positive. 
 

 
 
Figure 3.4.1: stress components acting on two perpendicular planes through a point; 

(a) two perpendicular surfaces at a point, (b) small material element at the point 
 
The four stresses can conveniently be written in the form of a stress matrix: 
 

xx xy

ij
yx yy

 


 
 

     
 

           (3.4.1) 

 
It will be shown below that the stress components acting on any other plane through p can 
be evaluated from a knowledge of only these stress components. 
 
 
3.4.1 Symmetry of the Shear Stress 
 
Consider the material element shown in Fig. 3.4.1b, reproduced in Fig. 3.4.2a below.  The 
element has dimensions is yx   and is subjected to uniform stresses over its sides.  
The resultant forces of the stresses acting on each side of the element act through the side-
centres, and are shown in Fig. 3.4.2b.  The stresses shown are positive, but note how 
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positive stresses can lead to negative forces, depending on the definition of the yx   
axes used.  The resultant force on the complete element is seen to be zero. 
 

 
 

Figure 3.4.2: stress components acting on a material element; (a) stresses, (b) 
resultant forces on each side 

 
By taking moments about any point in the block, one finds that {▲Problem 1} 
 

yxxy        (3.4.2) 

 
Thus the shear stresses acting on the element are all equal, and for this reason the yx  

stresses are usually labelled xy , Fig. 3.4.3a, or simply labelled  , Fig. 3.4.3b. 

 

 
 

Figure 3.4.3: shear stress acting on a material element 
 
In fact, in two-dimensional problems, the double-subscript notation is often dispensed 
with for simplicity, and the stress matrix can be expressed as 
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  x

y

 


 
 

  
 

,           (3.4.3) 

 
to go along with the representation shown in Fig. 3.4.4. 
 

 
 

Figure 3.4.4: a simpler notation for 2D stress components (without the double 
subscripts) 

 
 
3.4.2 Three Dimensional Stress 
 
The three-dimensional counterpart to the two-dimensional element of Fig. 3.4.2 is shown 
in Fig. 3.4.5.  Again, all stresses shown are positive. 
 

 
 

Figure 3.4.5: a three dimensional material element 
 
Moment equilibrium in this case requires that 
 

zyyzzxxzyxxy   ,,         (3.4.4) 
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The nine stress components, six of which are independent, can be written in the matrix 
form 
 

 


















zzzyzx

yzyyyx

xzxyxx

ij





       (3.4.5) 

 
A vector F has one direction associated with it and is characterised by three components 

),,( zyx FFF .  The stress is a quantity which has two directions associated with it (the 

direction of a force and the normal to the plane on which the force acts) and is 
characterised by the nine components of Eqn. 3.4.5.  Such a mathematical object is called 
a tensor.  Just as the three components of a vector change with a change of coordinate 
axes (for example, as in Fig. 2.2.1), so the nine components of the stress tensor change 
with a change of axes.  This is discussed in the next section for the two-dimensional case.   
 
 
3.4.3 Stress Transformation Equations 
 
Consider the case where the nine stress components acting on three perpendicular planes 
through a material particle are known.  These components are ,xx xy  , etc. when using 

, ,x y z  axes, and can be represented by the cube shown in Fig. 3.4.6a.  Rotate now the 
planes about the three axes – these new planes can be represented by the rotated cube 
shown in Fig. 3.4.6b; the axes normal to the planes are now labelled , ,x y z    and the 

corresponding stress components with respect to these new axes are ,xx xy   , etc. 

 

 
 
Figure 3.4.6: a three dimensional material element; (a) original element, (b) rotated 

element 
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There is a relationship between the stress components ,xx xy  , etc. and the stress 

components ,xx xy   , etc.  The relationship can be derived using Newton’s Laws.  The 

equations describing the relationship in the fully three-dimensional case are very lengthy.  
Here, the relationship for the two-dimensional case will be derived – this 2D relationship 
will prove very useful in analysing many practical situations. 
 
Two-dimensional Stress Transformation Equations 
 
Assume that the stress components of Fig. 3.4.7a are known.  It is required to find the 
stresses arising on other planes through p.  Consider the perpendicular planes shown in 
Fig. 3.4.7b, obtained by rotating the original element through a positive 
(counterclockwise) angle  .  The new surfaces are defined by the axes yx  . 
 

 
 

Figure 3.4.7: stress components acting on two different sets of perpendicular 
surfaces, i.e. in two different coordinate systems; (a) original system, (b) rotated 

system  
 
To evaluate these new stress components, consider a triangular element of material at the 
point, Fig. 3.4.8.  Carrying out force equilibrium in the direction x , one has (with unit 
depth into the page) 
 

: cos sin sin cos 0x xx xx yyF AB OB OA OB OA                    (3.4.6) 

 
Since  sin,cos ABOAABOB  , and dividing through by AB , 

 
 2sinsincos 22  yyxxxx     (3.4.7) 
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Figure 3.4.8: a free body diagram of a triangular element of material 
 

The forces can also be resolved in the y  direction and one obtains the relation 
 

 2coscossin)(  xxyy        (3.4.8) 

 
Finally, consideration of the element in Fig. 3.4.9 yields two further relations, one of 
which is the same as Eqn. 3.4.8. 
 

 
 

Figure 3.4.9: a free body diagram of a triangular element of material 
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In summary, one obtains the stress transformation equations: 
 

xyxxyyxy

xyyyxxyy

xyyyxxxx
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     2D Stress Transformation Equations (3.4.9) 

 
These equations have many uses, as will be seen in the next section. 
 
In matrix form,  
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yyyx
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These relations hold also in the case when there are body forces, when the material is 
accelerating and when there are non-uniform stress fields. (This is discussed in the next 
section.) 
 
 
3.4.4 Problems 
 
1. Derive Eqns. 3.4.2 by taking moments about the lower left corner of the block in Fig. 

3.4.2. 
 
2. Suppose that the stresses acting on two perpendicular planes through a point are 
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Use the stress transformation formulae to evaluate the stresses acting on two new 
perpendicular planes through the point, obtained from the first set by a positive 
rotation of o30 .  Use the conventional notation yx   to represent the coordinate 
axes parallel to these new planes. 
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3.4b Stress Transformation: Further Aspects 
 
Here, it will be shown that the Stress Transformation Equations are valid also when (i) 
there are body forces, (ii) the body is accelerating and (iii) the stress and other quantities 
are not uniform. We will also examine the fully three-dimensional stress subject to the 
transformation. 
 
Suppose that a body force    b b bx y

 F F i F j  acts on the material and that the material 

is accelerating with an acceleration x ya a a i j .  The components of body force and 

acceleration are shown in Fig. 3.4.10 (a reproduction of Fig. 3.4.8). 
 

 
 

Figure 3.4.10: a free body diagram of a triangular element of material, including a 
body force and acceleration 

 
The body force will vary depending on the size of the material under consideration, e.g. 
the force of gravity b mF g  will be larger for larger materials; therefore consider a 

quantity which is independent of the amount of material: the body force per unit mass, 
/b mF . Then, Eqn 3.4.6 now reads 
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F F
     (3.4.11) 

 
where m is the mass of the triangular portion of material.  The volume of the triangle is 

21
2 / sin 2OA OB AB   so that, this time, when 3.4.11 is divided through by AB , one 

is left with 
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where   is the density.  Now, as the element is shrunk in size down to the vertex O, 

0AB  , and Eqn. 3.4.6 is recovered.  Thus the Stress Transformation Equations are 

valid provided the element under consideration is very small; in the limit, they are valid 
“at the point” O. 
 
Finally, consider the case where the stress is not uniform over the faces of the triangular 
portion of material.  Intuitively, it can be seen that, if one again shrinks the portion of 
material down in size to the vertex O, the Stress Transformation Equations will again be 
valid, with the quantities , ,xx xx yy    etc. being the values “at” the vertex.  To be more 

precise, consider the xx  stress acting over the face OB  in Fig. 3.4.11.  No matter how 

the stress varies in the material, if the distance OB  is small, the stress can be 

approximated by a linear stress distribution, Fig. 3.4.11b.  This linear distribution can 
itself be decomposed into two components, a uniform stress of magnitude o

xx  (the value 

of xx  at the vertex) and a triangular distribution with maximum value xx .  The 

resultant force on the face is then  / 2o
xx xxOB    .  This time, as the element is 

shrunk in size, 0xx   and Eqn. 3.4.6 is again recovered.  The same argument can be 

used to show that the Stress Transformation Equations are valid for any varying stress, 
body force or acceleration.  
 

 
 

Figure 3.4.11: stress varying over a face; (a) stress is linear over OB if OB is small, 
(b) linear distribution of stress as a uniform stress and a triangular stress 

 
Three Dimensions Re-visited 
 
As the planes were rotated in the two-dimensional analysis, no consideration was given to 
the stresses acting in the “third dimension”.  Considering again a three dimensional block, 
Fig. 3.4.12, there is only one traction vector acting on the x y  plane at the material 
particle, t.  This traction vector can be described in terms of the , ,x y z  axes as 

zx zy zz    t i j k , Fig 3.4.12a.  Alternatively, it can be described in terms of the 

, ,x y z    axes as zx zy zz         t i j k , Fig 3.4.12b. 
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Figure 3.4.12: a three dimensional material element; (a) original element, (b) rotated 

element (rotation about the z axis) 
 
With the rotation only happening in the x y  plane, about the z axis, one has 

,zz zz   k k .  One can thus examine the two dimensional x y  plane shown in Fig. 

3.4.13, with 
 

zx zy zx zy        i j i j .                                          (3.4.13) 

 
Using some trigonometry, one can see that 
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   
.                                       (3.4.14) 

 

 
 
Figure 3.4.12: the traction vector represented using two different coordinate systems 
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3.5 Plane Stress 
 
This section is concerned with a special two-dimensional state of stress called plane stress.  
It is important for two reasons: (1) it arises in real components (particularly in thin 
components loaded in certain ways), and (2) it is a two dimensional state of stress, and thus 
serves as an excellent introduction to more complicated three dimensional stress states. 
 
 
3.5.1 Plane Stress 
 
The state of plane stress is defined as follows: 
 
Plane Stress: 
If the stress state at a material particle is such that the only non-zero stress components act in 
one plane only, the particle is said to be in plane stress. 
 
The axes are usually chosen such that the yx   plane is the plane in which the stresses act, 
Fig. 3.5.1. 
 

 
 

Figure 3.5.1: non-zero stress components acting in the x – y plane 
 
The stress can be expressed in the matrix form 3.4.1. 
 
Example 
 
The thick block of uniform material shown in Fig. 3.5.2, loaded by a constant stress o  in 

the x  direction, will have 0 xx  and all other components zero everywhere.  It is 

therefore in a state of plane stress. 
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Figure 3.5.2: a thick block of material in plane stress 
 
 
3.5.2 Analysis of Plane Stress 
 
Next are discussed the stress invariants, principal stresses and maximum shear stresses 
for the two-dimensional plane state of stress, and tools for evaluating them.  These quantities 
are useful because they tell us the complete state of stress at a point in simple terms.  Further, 
these quantities are directly related to the strength and response of materials.  For example, 
the way in which a material plastically (permanently) deforms is often related to the 
maximum shear stress, the directions in which flaws/cracks grow in materials are often 
related to the principal stresses, and the energy stored in materials is often a function of the 
stress invariants. 
 
Stress Invariants 
 
A stress invariant is some function of the stress components which is independent of the 
coordinate system being used; in other words, they have the same value no matter where the 

yx   axes are drawn through a point.  In a two dimensional space there are two stress 

invariants, labelled 1I  and 2I .  These are 
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 Stress Invariants  (3.5.1) 

 
These quantities can be proved to be invariant directly from the stress transformation 
equations, Eqns. 3.4.9 {▲Problem 1}.  Physically, invariance of 1I  and 2I  means that they 
are the same for any chosen perpendicular planes through a material particle. 
 
Combinations of the stress invariants are also invariant, for example the important quantity 
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Principal Stresses 
 
Consider a material particle for which the stress, with respect to some yx   coordinate 
system, is 
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             (3.5.3) 

 
The stress acting on different planes through the point can be evaluated using the Stress 
Transformation Equations, Eqns. 3.4.9, and the results are plotted in Fig. 3.5.3.  The original 
planes are re-visited after rotating o180 .  
 

  
 

Figure 3.5.3: stresses on different planes through a point 
 
It can be seen that there are two perpendicular planes for which the shear stress is zero, for  

 o58  and  o
58 90   .  In fact it can be proved that for every point in a material there are 

two (and only two) perpendicular planes on which the shear stress is zero (see below).  These 
planes are called the principal planes.  It will also be noted from the figure that the normal 
stresses acting on the planes of zero shear stress are either a maximum or minimum.  Again, 
this can be proved (see below).  These normal stresses are called principal stresses.  The 
principal stresses are labelled 1  and 2 , Fig. 3.5.4. 
 

 
 

Figure 3.5.4: principal stresses 
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The principal stresses can be obtained by setting 0xy  in the Stress Transformation 

Equations, Eqns. 3.4.9, which leads to the value of   for which the planes have zero shear 
stress: 
 

yyxx

xy








2

2tan  Location of Principal Planes  (3.5.4) 

 
For the example stress state, Eqn. 3.5.3, this leads to 
 

 2arctan
2

1
  

 
and so the perpendicular planes are at   28.14872.31  and  3.58 . 
 
Explicit expressions for the principal stresses can be obtained by substituting the value of    
from Eqn. 3.5.4 into the Stress Transformation Equations, leading to (see the Appendix to 
this section, §3.5.7) 
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For the example stress state Eqn.3.5.3, one has 
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Note here that one uses the symbol 1  to represent the maximum principal stress and 2  to 
represent the minimum principal stress.  By maximum, it is meant the algebraically largest 
stress so that, for example, 31  . 
 
From Eqns. 3.5.2, 3.5.5, the principal stresses are invariant; they are intrinsic features of the 
stress state at a point and do not depend on the coordinate system used to describe the stress 
state. 
 
The question now arises: why are the principal stresses so important?  One part of the answer 
is that the maximum principal stress is the largest normal stress acting on any plane through a 
material particle.  This can be proved by differentiating the stress transformation formulae 
with respect to , 
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         (3.5.6) 

 
The maximum/minimum values can now be obtained by setting these expressions to zero.   
One finds that the normal stresses are a maximum/minimum at the very value of   in Eqn. 
3.5.4 – the value of   for which the shear stresses are zero – the principal planes. 
 
Very often the only thing one knows about the stress state at a point are the principal stresses.  
In that case one can derive a very useful formula as follows: align the coordinate axes in the 
principal directions, so 
 

0,, 21  xyyyxx     (3.5.7) 

 
Using the transformation formulae with the relations )2cos1(sin 2
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      (3.5.8) 

 
Here,   is measured from the principal directions, as illustrated in Fig. 3.5.5. 
 

 
 

Figure 3.5.5: principal stresses and principal directions 
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The Third Principal Stress 
 
Although plane stress is essentially a two-dimensional stress-state, it is important to keep in 
mind that any real particle is three-dimensional.  The stresses acting on the x y  plane are 

the normal stress zz  and the shear stresses zx  and zy , Fig. 3.5.6.  These are all zero (in 

plane stress).  It was discussed above how the principal stresses occur on planes of zero shear 
stress.  Thus the zz  stress is also a principal stress.  Technically speaking, there are always 

three principal stresses in three dimensions, and (at least) one of these will be zero in plane 
stress.  This fact will be used below in the context of maximum shear stress. 
 

 
 

Figure 3.5.6: stresses acting on the x – y plane 
 
 
Maximum Shear Stress 
 
Eqns. 3.5.8 can be used to derive an expression for the maximum shear stress.  
Differentiating the expression for shear stress with respect to  , setting to zero and solving, 
shows that the maximum/minimum occurs at 45 , in which case 
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or 
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Thus the shear stress reaches a maximum on planes which are oriented at  45  to the 
principal planes, and the value of the shear stress acting on these planes is as given above.  
Note that the formula Eqn. 3.5.9 does not let one know in which direction the shear stresses 
are acting but this is not usually an important issue.  Many materials respond in certain ways 
when the maximum shear stress reaches a critical value, and the actual direction of shear 
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stress is unimportant.  The direction of the maximum principal stress is, on the other hand, 
important – a material will in general respond differently according to whether the normal 
stress is compressive or tensile. 
 
The normal stress acting on the planes of maximum shear stress can be obtained by 
substituting 45  back into the formulae for normal stress in Eqn. 3.5.8, and one sees that 
 

2/)( 21   yyxx      (3.5.10) 

 
The results of this section are summarised in Fig. 3.5.7. 
 

 
 

Figure 3.5.7: principal stresses and maximum shear stresses acting in the x – y plane 
 
The maximum shear stress in the x y  plane was calculated above, Eqn. 3.5.9.  This is not 
necessarily the maximum shear stress acting at the material particle.  In general, it can be 
shown that the maximum shear stress is the maximum of the following three terms (see Part 
III, §3.4.3): 
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The first term is the maximum shear stress in the 1 2  plane, i.e. the plane containing the 1  

and 2  stresses (and given by Eqn. 3.5.9).  The second term is the maximum shear stress in 

the 1 3  plane and the third term is the maximum shear stress in the 2 3  plane.  These are 
sketched in Fig. 3.5.8 below. 
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Figure 3.5.8: principal stresses and maximum shear stresses 
 
In the case of plane stress, 3 0zz   , and the maximum shear stress will be (see the 

Appendix to this section, §3.5.7) 
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3.5.3 Stress Boundary Conditions 
 
When solving problems, information is usually available on what is happening at the 
boundaries of materials.  This information is called the boundary conditions.  Information is 
usually not available on what is happening in the interior of the material – information there 
is obtained by solving the equations of mechanics. 
 
A number of different conditions can be known at a boundary, for example it might be 
known that a certain part of the boundary is fixed so that the displacements there are zero.  
This is known as a displacement boundary condition.  On the other hand the stresses over a 
certain part of the material boundary might be known.  These are known as stress boundary 
conditions – this case will be examined here. 
 
General Stress Boundary Conditions 
 
It has been seen already that, when one material contacts a second material, a force, or 
distribution of stress arises.  This force F will have arbitrary direction, Fig. 3.5.9a, and can be 
decomposed into the sum of a normal stress distribution N  and a shear distribution S , Fig. 

3.5.9b.  One can introduce a coordinate system to describe the applied stresses, for example 
the yx   axes shown in Fig. 3.5.9c (the axes are most conveniently defined to be normal and 
tangential to the boundary). 
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Figure 3.5.9: Stress boundary conditions; (a) force acting on material due to contact 
with a second material, (b) the resulting normal and shear stress distributions, (c) 

applied stresses as stress components in a given coordinate system 
 
 
Figure 3.5.10 shows the same component as Fig. 3.5.9.  Shown in detail is a small material 
element at the boundary.  From equilibrium of the element, stresses yyxy  , , equal to the 

applied stresses, must be acting inside the material, Fig. 3.5.10a.  Note that the tangential 
stresses, which are the xx  stresses in this example, can take on any value and the element 

will still be in equilibrium with the applied stresses, Fig. 3.5.10b. 
 

 
 

Figure 3.5.10: Stresses acting on a material element at the boundary, (a) normal and 
shear stresses, (b) tangential stresses 

 
Thus, if the applied stresses are known, then so also are the normal and shear stresses acting 
at the boundary of the material.  
 
Stress Boundary Conditions at a Free Surface 
 
A free surface is a surface that has “nothing” on one side and so there is nothing to provide 
reaction forces.  Thus there must also be no normal or shear stress on the other side (the 
inside). 
 
This leads to the following, Fig. 3.5.11: 
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Stress boundary conditions at a free surface: 
the normal and shear stress at a free surface are zero 
 
This simple fact is used again and again to solve practical problems. 
 
Again, the stresses acting normal to any other plane at the surface do not have to be zero – 
they can be balanced as, for example, the tangential stresses T  and the stress   in Fig. 
3.5.11. 
 
 

 
 

Figure 3.5.11: A free surface - the normal and shear stresses there are zero 
 
 
Atmospheric Pressure 
 
There is something acting on the outside “free” surfaces of materials – the atmospheric 
pressure.  This is a type of stress which is hydrostatic, that is, it acts normal at all points, as 
shown in Fig. 3.5.12.  Also, it does not vary much.  This pressure is present when one 
characterises a material, that is, when its material properties are determined from tests and so 
on, for example, its Young’s Modulus (see Chapter 5).  The atmospheric pressure is therefore 
a datum – stresses are really measured relative to this value, and so the atmospheric pressure 
is ignored. 
 

 
 

Figure 3.5.12: a material subjected to atmospheric pressure 
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3.5.4 Thin Components 
 
Consider a thin component as shown in Fig. 3.5.13.  With the coordinate axes aligned as 
shown, and with the large face free of loading, one has 0 zzzyzx  .  Strictly 

speaking, these stresses are zero only at the free surfaces of the material but, because it is 
thin, these stresses should not vary much from zero within.  Taking the “z” stresses to be 
identically zero throughout the material, the component is in a state of plane stress1.  On the 
other hand, were the sheet not so thin, the stress components that were zero at the free-
surfaces might well deviate significantly from zero deep within the material and one could 
not safely argue that the component was in a state of plane stress. 
 

 
 

Figure 3.5.13: a thin material loaded in-plane, leading to a state of plane stress 
 
When analysing plane stress states, only one cross section of the material need be considered.  
This is illustrated in Fig. 3.5.14. 
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Figure 3.5.14: one two-dimensional cross-section of material 
 
Note that, although the stress normal to the plane, zz , is zero, the three dimensional sheet of 
material is deforming in this direction – it will obviously be getting thinner under the tensile 
loading shown in Fig. 3.5.14. 
 
Note that plane stress arises in all thin materials (loaded in –plane), no matter what they are 
made of. 
 
 
3.5.5 Mohr’s Circle 
 
Otto Mohr devised a way of describing the state of stress at a point using a single diagram, 
called the Mohr's circle.  
 
To construct the Mohr circle, first introduce the stress coordinates   , , Fig. 3.5.15; the 
abscissae (horizontal) are the normal stresses   and the ordinates (vertical) are the shear 
stresses  .  On the horizontal axis, locate the principal stresses 21 , , with 21   .  Next, 

draw a circle, centred at the average principal stress     0,2/, 21   ,  having radius 

  2/21   . 
 
The normal and shear stresses acting on a single plane are represented by a single point on 
the Mohr circle.  The normal and shear stresses acting on two perpendicular planes are 
represented by two points, one at each end of a diameter on the Mohr circle.  Two such 
diameters are shown in the figure. The first is horizontal.  Here, the stresses acting on two 
perpendicular planes are    0,, 1   and    0,, 2   and so this diameter represents 
the principal planes/stresses.  
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Figure 3.5.15: Mohr’s Circle 
 
The stresses on planes rotated by an amount   from the principal planes are given by Eqn. 
3.5.8.  Using elementary trigonometry, these stresses are represented by the points A and B 
in Fig. 3.5.15.  Note that a rotation of   in the physical plane corresponds to a rotation of 2  
in the Mohr diagram. 
 
Note also that the conventional labeling of shear stress has to be altered when using the Mohr 
diagram.  On the Mohr circle, a shear stress is positive if it yields a clockwise moment about 
the centre of the element, and is "negative" when it yields a negative moment.  For example, 
at point A the shear stress is "positive" ( 0 ), which means the direction of shear on face A 
of the element is actually opposite to that shown. This agrees with the formula 

 2sin)(
2

1
21 xy , which is less than zero for 21    and o90 .  At point B the 

shear stress is "negative" ( 0 ), which again agrees with formula. 
 
 
3.5.6 Problems 
 
1. Prove that the function yx   , i.e. the sum of the normal stresses acting at a point, is a 

stress invariant. [Hint: add together the first two of Eqns. 3.4.9.] 
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2. Consider a material in plane stress conditions.  An element at a free surface of this 

material is shown below left.  Taking the coordinate axes to be orthogonal to the surface 
as shown (so that the tangential stress is xx ), one has 
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(a) what are the two in-plane principal stresses at the point?  Which is the maximum and 
which is the  minimum?  

(b) examine planes inclined at 45o to the free surface, as shown below right.  What are the 
stresses acting on these planes and what have they got to do with maximum shear 
stress? 

 

 
 
3. The stresses at a point in a state of plane stress are given by  
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(a) Draw a little box to represent the point and draw some arrows to indicate the 
magnitude and direction of the stresses acting at the point. 

(b) What relationship exists between Oxy  and a second coordinate set yxO   , such that 
the shear stresses are zero in yxO  ? 

(c) Find the two in-plane principal stresses. 
(d) Draw another box whose sides are aligned to the principal directions and draw some 

arrows to indicate the magnitude and direction of the principal stresses acting at the 
point. 

(e) Check that the sum of the normal stresses at the point is an invariant. 
 

4. A material particle is subjected to a state of stress given by 
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Find the principal stresses (all three), maximum shear stresses (see Eqn. 3.5.11), and the 
direction of the planes on which these stresses act. 
 
 
 
 

xx  

y 

xx 

y 

o45

xy 

xy  xx 

yy 

y x
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5. Consider the following state of stress (with respect to an , ,x y z  coordinate system): 

0 0

0 0

0 0 0



 
 
 
  

 

(a) Use the stress transformation equations to derive the stresses acting on planes 
obtained from the original planes by a counterclockwise rotation of 45o about z  axis. 

(b) What is the maximum normal stress acting at the point? 
(c) What is the maximum shear stress? On what plane(s) does it act? (See Eqn. 3.5.11.) 

 
6. Consider the two dimensional stress state 

  



 
 0

0
ij  

Show that this is an isotropic state of stress, that is, the stress components are the same 
on all planes through a material particle.  

 
7. (a) Is a trampoline (the material you jump on) in a state of plane stress?  When someone 

is actually jumping on it? 
(b) Is a picture hanging on a wall in a state of plane stress?  
(c) Is a glass window in a state of plane stress?  On a very windy day?  
(d) A piece of rabbit skin is stretched in a testing machine – is it in a state of plane stress? 

 
 
3.5.7 Appendix to §3.5 
 
A Note on the Formulae for Principal Stresses 
 
To derive Eqns. 3.5.5, first rewrite the transformation equations in terms of 2  using 

)2cos1(sin 2
12    and )2cos1(cos 2

12    to get 

 

xyxxyyxy

xyyyxxyy

xyyyxxxx





2cos)(2sin
2sin)2cos1()2cos1(
2sin)2cos1()2cos1(

2
1

2
1

2
1

2
1

2
1





 

 
Next, from Eqn. 3.5.4,  
 

2222 4)(
2cos,

4)(

2
2sin

xyyyxx

yyxx

xyyyxx

xy

















  

 
Substituting into the rewritten transformation formulae then leads to 
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0
)()(

)()(
22

4
1

2
1

22
4
1

2
1





xy

xyyyxxyyxxyy

xyyyxxyyxxxx





 

 
Here yyxx    so that the maximum principal stress is xx 1  and the minimum principal 

stress is yy 2 .  Here it is implicitly assumed that 02tan  , i.e. that 9020    or 

2702180   .  On the other hand one could assume that 02tan  , i.e. that 
180290    or 3602270   , in which case one arrives at the formulae 

 

22
4
1

2
1

22
4
1

2
1

)()(

)()(

xyyyxxyyxxyy

xyyyxxyyxxxx







 

 
The results can be summarised as Eqn. 3.5.5, 
 

22
4
1

2
1

2

22
4
1

2
1

1

)()(

)()(

xyyyxxyyxx

xyyyxxyyxx







 

 
These formulae do not tell one on which of the two principal planes the maximum principal 
stress acts.  This might not be an important issue, but if this information is required one needs 
to go directly to the stress transformation equations.  In the example stress state, Eqn. 3.5.3, 
one has 

 

)1(2sin)1(cos)2(sin
)1(2sin)1(sin)2(cos

22

22







yy

xx  

 
For   28.14872.31 , 62.2xx  and 38.0yy .  So one has the situation shown 

below.  
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If one takes the other angle,  3.58 , one has 38.0xx  and 62.2yy , and the situation 

below

 
 
 
A Note on the Maximum Shear Stress 
 
Shown below left is a box element with sides perpendicular to the 1,2, z  axes, i.e. aligned 
with the principal directions.  The stresses in the new ,x y   axis system shown are given by 
Eqns. 3.5.8, with   measured from the principal directions: 
 







2sin)(
2

1

2cos)(
2

1
)(

2

1

2cos)(
2

1
)(

2

1

21

2121

2121







xy

yy

xx

 

 
Now as well as rotating around in the 1 2  plane through an angle  , rotate also in the ,x z  
plane through an angle   (see below right).  This rotation leads to the new stresses 
 

yy 

xx 

o31.72   x

y

x

xx 

yy 
o58.3  

y
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2 2

2 2

ˆ cos sin sin 2

ˆ sin cos sin 2

ˆ sin cos ( ) cos2

xx xx zz x z

zz xx zz x z

xz zz xx x z

   

   
     







  

  
  

 

 
In plane stress, 0zz x z    , so one has the stresses 

 
2 2 1

2ˆ ˆ ˆcos , sin , sin 2xx xx yy xx xy xx            

 

 
 
The shear stress can be written out in full: 
 

   1 1 1
1 2 1 22 2 2ˆ , sin 2 ( ) ( )cos2xy             . 

 
This is a function of two variables; its minimum value can be found by setting the partial 
derivatives with respect to these variables to zero.  Differentiating, 
 

 
 

1 1
1 2 1 22 2

1
1 22

ˆ / cos2 ( ) ( )cos2

ˆ / sin 2 ( )sin 2

xy

xy

       

     

      

     
 

 
Setting to zero gives the solutions sin 2 0  , cos2 0  , i.e. 0  , o45  .  Thus the 

maximum shear stress occurs at o45  to the 1 2  plane, and in the 1 z , i.e. 1 3  plane (as in 

Fig. 3.5.8b).  The value of the maximum shear stress here is then 1
12ˆ xy  , which is the 

expression in Eqn. 3.5.11. 
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3.5b Stress Boundary Conditions: Continued 
 
Consider now in more detail a surface between two different materials, Fig. 3.5.16.  One says 
that the normal and shear stresses are continuous across the surface, as illustrated. 
 

 
 

Figure 3.5.16: normal and shear stress continuous across an interface between two 
different materials, material ‘1’ and material ‘2’ 

 
Note also that, since the shear stress xy  is the same on both sides of the surface, the shear 

stresses acting on both sides of a perpendicular plane passing through the interface between 
the materials, by the symmetry of stress, must also be the same, Fig. 3.5.17a. 
 

 
 

 Figure 3.5.17: stresses at an interface; (a) shear stresses continuous across the 
interface, (b) tangential stresses not necessarily continuous 

 
However, again, the tangential stresses, those acting parallel to the interface, do not have to 
be equal.  For example, shown in Fig. 3.5.17b are the tangential stresses acting in the upper 
material, )2(

xx  - they balance no matter what the magnitude of the stresses )1(
xx . 

 
Description of Boundary Conditions 
 
The following example brings together the notions of stress boundary conditions, stress 
components, equilibrium and equivalent forces.  

2 

1 
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Example 
 
Consider the plate shown in Fig. 3.5.18.  It is of width a2 , height b and depth t.  It is 
subjected to a tensile stress r, pressure p and shear stresses s.  The applied stresses are 
uniform through the thickness of the plate.  It is welded to a rigid base. 
 

 
 

Figure 3.5.18: a plate subjected to stress distributions 
 
Using the yx   axes shown, the stress boundary conditions can be expressed as: 
 

Left-hand surface: 







sya
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xy
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),(



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






sbx

rbx

xy

yy

),(

),(




,      axa   

Right-hand surface: 







sya

ya

xy

xx

),(

0),(




,       by 0  

 
Note carefully the description of the normal and shear stresses over each side and the signs of 
the stress components. 
 
The stresses at the lower edge are unknown (there is a displacement boundary condition 
there: zero displacement).  They will in general not be uniform.  Using the given yx   axes, 
these unknown reaction stresses, exerted by the base on the plate, are (see Fig 3.5.19) 
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Lower surface: 




)0,(

)0,(

x

x

xy

yy




,       axa   

 
Note the directions of the arrows in Fig. 3.5.19, they have been drawn in the direction of 
positive )0,(),0,( xx xyyy  . 

  

 
 

Figure 3.5.19: unknown reaction stresses acting on the lower edge 
 
For force equilibrium of the complete plate, consider the free-body diagram 3.5.20; shown 
are the resultant forces of the stress distributions.  Force equilibrium requires that 
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Figure 3.5.20: a free-body diagram of the plate in Fig. 3.5.18 showing the known 
resultant forces (forces on the lower boundary are not shown) 

 
For moment equilibrium, consider the moments about, for example, the lower left-hand  
corner.  One has 
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  0)0,()2()(2)(2)2/(0  

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a

a

yy  

If one had taken moments about the top-left corner, the equation would read 
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■ 
 
Problems 
 
8. Consider the point shown below, at the boundary between a wall and a dissimilar 

material.  Label the stress components displayed using the coordinate system shown.  
Which stress components are continuous across the wall/material boundary?  (Add a 
superscript ‘w’ for the stresses in the wall.) 

 

 
 
9. A thin metal plate of width b2 , height h and depth t is loaded by a pressure distribution 

)(xp  along axa   and welded at its base to the ground, as shown in the figure 
below.  Write down expressions for the stress boundary conditions (two on each of the 
three edges).  Write down expressions for the force equilibrium of the plate and moment 
equilibrium of the plate about the corner A. 
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