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3.4 Equilibrium of Stress 
 
Consider two perpendicular planes passing through a point p.  The stress components 
acting on these planes are as shown in Fig. 3.4.1a.  These stresses are usually shown 
together acting on a small material element of finite size, Fig. 3.4.1b.  It has been seen 
that the stress may vary from point to point in a material but, if the element is very small, 
the stresses on one side can be taken to be (more or less) equal to the stresses acting on 
the other side.  By convention, in analyses of the type which will follow, all stress 
components shown are positive. 
 

 
 
Figure 3.4.1: stress components acting on two perpendicular planes through a point; 

(a) two perpendicular surfaces at a point, (b) small material element at the point 
 
The four stresses can conveniently be written in the form of a stress matrix: 
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It will be shown below that the stress components acting on any other plane through p can 
be evaluated from a knowledge of only these stress components. 
 
 
3.4.1 Symmetry of the Shear Stress 
 
Consider the material element shown in Fig. 3.4.1b, reproduced in Fig. 3.4.2a below.  The 
element has dimensions is yx   and is subjected to uniform stresses over its sides.  
The resultant forces of the stresses acting on each side of the element act through the side-
centres, and are shown in Fig. 3.4.2b.  The stresses shown are positive, but note how 
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positive stresses can lead to negative forces, depending on the definition of the yx   
axes used.  The resultant force on the complete element is seen to be zero. 
 

 
 

Figure 3.4.2: stress components acting on a material element; (a) stresses, (b) 
resultant forces on each side 

 
By taking moments about any point in the block, one finds that {▲Problem 1} 
 

yxxy        (3.4.2) 

 
Thus the shear stresses acting on the element are all equal, and for this reason the yx  

stresses are usually labelled xy , Fig. 3.4.3a, or simply labelled  , Fig. 3.4.3b. 

 

 
 

Figure 3.4.3: shear stress acting on a material element 
 
In fact, in two-dimensional problems, the double-subscript notation is often dispensed 
with for simplicity, and the stress matrix can be expressed as 
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to go along with the representation shown in Fig. 3.4.4. 
 

 
 

Figure 3.4.4: a simpler notation for 2D stress components (without the double 
subscripts) 

 
 
3.4.2 Three Dimensional Stress 
 
The three-dimensional counterpart to the two-dimensional element of Fig. 3.4.2 is shown 
in Fig. 3.4.5.  Again, all stresses shown are positive. 
 

 
 

Figure 3.4.5: a three dimensional material element 
 
Moment equilibrium in this case requires that 
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The nine stress components, six of which are independent, can be written in the matrix 
form 
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A vector F has one direction associated with it and is characterised by three components 

),,( zyx FFF .  The stress is a quantity which has two directions associated with it (the 

direction of a force and the normal to the plane on which the force acts) and is 
characterised by the nine components of Eqn. 3.4.5.  Such a mathematical object is called 
a tensor.  Just as the three components of a vector change with a change of coordinate 
axes (for example, as in Fig. 2.2.1), so the nine components of the stress tensor change 
with a change of axes.  This is discussed in the next section for the two-dimensional case.   
 
 
3.4.3 Stress Transformation Equations 
 
Consider the case where the nine stress components acting on three perpendicular planes 
through a material particle are known.  These components are ,xx xy  , etc. when using 

, ,x y z  axes, and can be represented by the cube shown in Fig. 3.4.6a.  Rotate now the 
planes about the three axes – these new planes can be represented by the rotated cube 
shown in Fig. 3.4.6b; the axes normal to the planes are now labelled , ,x y z    and the 

corresponding stress components with respect to these new axes are ,xx xy   , etc. 

 

 
 
Figure 3.4.6: a three dimensional material element; (a) original element, (b) rotated 

element 
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There is a relationship between the stress components ,xx xy  , etc. and the stress 

components ,xx xy   , etc.  The relationship can be derived using Newton’s Laws.  The 

equations describing the relationship in the fully three-dimensional case are very lengthy.  
Here, the relationship for the two-dimensional case will be derived – this 2D relationship 
will prove very useful in analysing many practical situations. 
 
Two-dimensional Stress Transformation Equations 
 
Assume that the stress components of Fig. 3.4.7a are known.  It is required to find the 
stresses arising on other planes through p.  Consider the perpendicular planes shown in 
Fig. 3.4.7b, obtained by rotating the original element through a positive 
(counterclockwise) angle  .  The new surfaces are defined by the axes yx  . 
 

 
 

Figure 3.4.7: stress components acting on two different sets of perpendicular 
surfaces, i.e. in two different coordinate systems; (a) original system, (b) rotated 

system  
 
To evaluate these new stress components, consider a triangular element of material at the 
point, Fig. 3.4.8.  Carrying out force equilibrium in the direction x , one has (with unit 
depth into the page) 
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Since  sin,cos ABOAABOB  , and dividing through by AB , 
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Figure 3.4.8: a free body diagram of a triangular element of material 
 

The forces can also be resolved in the y  direction and one obtains the relation 
 

 2coscossin)(  xxyy        (3.4.8) 

 
Finally, consideration of the element in Fig. 3.4.9 yields two further relations, one of 
which is the same as Eqn. 3.4.8. 
 

 
 

Figure 3.4.9: a free body diagram of a triangular element of material 
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In summary, one obtains the stress transformation equations: 
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     2D Stress Transformation Equations (3.4.9) 

 
These equations have many uses, as will be seen in the next section. 
 
In matrix form,  
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These relations hold also in the case when there are body forces, when the material is 
accelerating and when there are non-uniform stress fields. (This is discussed in the next 
section.) 
 
 
3.4.4 Problems 
 
1. Derive Eqns. 3.4.2 by taking moments about the lower left corner of the block in Fig. 

3.4.2. 
 
2. Suppose that the stresses acting on two perpendicular planes through a point are 
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Use the stress transformation formulae to evaluate the stresses acting on two new 
perpendicular planes through the point, obtained from the first set by a positive 
rotation of o30 .  Use the conventional notation yx   to represent the coordinate 
axes parallel to these new planes. 

  
 


