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3.3 Internal Stress 
 
The idea of stress considered in §3.1 is not difficult to 
conceptualise since objects interacting with other objects are 
encountered all around us.  A more difficult concept is the 
idea of forces and stresses acting inside a material, “within 
the interior where neither eye nor experiment can reach” as 
Euler put it.  It took many great minds working for centuries 
on this question to arrive at the concept of stress we use 
today, an idea finally brought to us by Augustin Cauchy, 
who presented a paper on the subject to the Academy of 
Sciences in Paris, in 1822. 

       Augustin Cauchy  
 
3.3.1 Cauchy’s Concept of Stress 
 
Uniform Internal Stress 
 
Consider first a long slender block of material subject to equilibrating forces F at its ends, 
Fig. 3.3.1a.  If the complete block is in equilibrium, then any sub-division of the block 
must be in equilibrium also.  By imagining the block to be cut in two, and considering 
free-body diagrams of each half, as in Fig. 3.3.1b, one can see that forces F must be 
acting within the block so that each half is in equilibrium.  Thus external loads create 
internal forces; internal forces represent the action of one part of a material on another 
part of the same material across an internal surface.  We can take it that a uniform stress 

AF /  acts over this interior surface, Fig. 3.3.1b. 
 

 
 

Figure 3.3.1: a slender block of material; (a) under the action of external forces F, 
(b) internal normal stress σ, (c) internal normal and shear stress 
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Note that, if the internal forces were not acting over the internal surfaces, the two half-
blocks of Fig. 3.3.1b would fly apart; one can thus regard the internal forces as those 
required to maintain material in an un-cut state.  
 
If the internal surface is at an incline, as in Fig. 3.3.1c, then the internal force required for 
equilibrium will not act normal to the surface.  There will be components of the force 
normal and tangential to the surface, and thus both normal ( N ) and shear ( S ) stresses 

must arise.  Thus, even though the material is subjected to a purely normal load, internal 
shear stresses develop. 
 
From Fig. 3.3.2a, with the stress given by force divided by area, the normal and shear 
stresses arising on an interior surface inclined at angle   to the horizontal are 
{▲Problem 1} 
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Figure 3.3.2: stress on inclined surface; (a) decomposing the force into normal and 
shear forces, (b) stress at an internal point 

 
Although stress is associated with surfaces, one can speak of the stress “at a point”.  For 
example, consider some point interior to the block, Fig 3.3.2b.  The stress there evidently 
depends on which surface through that point is under consideration.  From Eqn. 3.3.1a, 
the normal stress at the point is a maximum AF /  when 0  and a minimum of zero 
when o90 .  The maximum normal stress arising at a point within a material is of 
special significance, for example it is this stress value which often determines whether a 
material will fail (“break”) there.  It has a special name: the maximum principal stress.  
From Eqn. 3.3.1b, the maximum shear stress at the point is AF 2/  and arises on 
surfaces inclined at o45 . 
 
Non-Uniform Internal Stress 
 
Consider a more complex geometry under a more complex loading, as in Fig. 3.3.3.  
Again, using equilibrium arguments, there will be some stress distribution acting over any 
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given internal surface.  To evaluate these stresses is not a straightforward matter, suffice 
to say here that they will invariably be non-uniform over a surface, that is, the stress at 
some particle will differ from the stress at a neighbouring particle. 
 

 
 

Figure 3.3.3: a component subjected to a complex loading, giving rise to a non-
uniform stress distribution over an internal surface 

 
Traction and the Physical Meaning of Internal Stress 
 
All materials have a complex molecular microstructure and each molecule exerts a force 
on each of its neighbours.  The complex interaction of countless molecular forces 
maintains a body in equilibrium in its unstressed state.  When the body is disturbed and 
deformed into a new equilibrium position, net forces act, Fig. 3.3.4a.  An imaginary plane 
can be drawn through the material, Fig. 3.3.4b.  Unlike some of his predecessors, who 
attempted the extremely difficult task of accounting for all the molecular forces, Cauchy 
discounted the molecular structure of matter and simply replaced the imagined molecular 
forces acting on the plane by a single force F, Fig 3.3.4c.  This is the force exerted by the 
molecules above the plane on the material below the plane and can be attractive or 
repulsive.  Different planes can be taken through the same portion of material and, in 
general, a different force will act on the plane, Fig 3.3.4d. 
 

 
 

Figure 3.3.4: a multitude of molecular forces represented by a single force; (a) 
molecular forces, a plane drawn through the material, replacing the molecular 

forces with an equivalent force F, a different equivalent force F acts on a different 
plane through the same material 

 
The definition of stress will now be made more precise.  First, define the traction at some 
particular point in a material as follows: take a plane of surface area S through the point, 
on which acts a force F.  Next shrink the plane – as it shrinks in size both S and F get 
smaller, and the direction in which the force acts may change, but eventually the ratio 

SF /  will remain constant and the force will act in a particular direction, Fig. 3.3.5.  The 
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limiting value of this ratio of force over surface area is defined as the traction vector (or 
stress vector) t:1 
 

           
S
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 0
limt      (3.3.2) 

 

 
 
Figure 3.3.5: the traction vector - the limiting value of force over area, as the surface 

area of the element on which the force acts is shrunk 
 
An infinite number of traction vectors act at any single point, since an infinite number of 
different planes pass through a point.  Thus the notation SFS  /lim 0  is ambiguous.  

For this reason the plane on which the traction vector acts must be specified; this can be 
done by specifying the normal n to the surface on which the traction acts, Fig 3.3.6.  The 
traction is thus a special vector – associated with it is not only the direction in which it 
acts but also a second direction, the normal to the plane upon which it acts. 
 

 
 

Figure 3.3.6: two different traction vectors acting at the same point 
 

                                                 
1 this does not mean that the force is acting on a surface of zero area – the meaning of this limit is further 
examined in section 5.4, in the context of the continuum 
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Stress Components 
 
The traction vector can be decomposed into components which act normal and parallel to 
the surface upon which it acts.  These components are called the stress components, or 
simply stresses, and are denoted by the symbol  ; subscripts are added to signify the 
surface on which the stresses act and the directions in which the stresses act. 
 
Consider a particular traction vector acting on a surface element.  Introduce a Cartesian 
coordinate system with base vectors kji ,,  so that one of the base vectors is a normal to 
the surface, and the origin of the coordinate system is positioned at the point at which the 
traction acts.  For example, in Fig. 3.3.7, the k  direction is taken to be normal to the 
plane, and kjit k

zyx ttt )( .  

 

 
 

Figure 3.3.7: the components of the traction vector 
 
Each of these components it  is represented by ij   where the first subscript denotes the 

direction of the normal to the plane and the second denotes the direction of the 
component.  Thus, re-drawing Fig. 3.3.7 as Fig. 3.3.8: kjit k

zzzyzx  )( .  The first 

two stresses, the components acting tangential to the surface, are shear stresses, whereas 

zz , acting normal to the plane, is a normal stress2. 
 

 
 

Figure 3.3.8: stress components – the components of the traction vector 
 

                                                 
2 this convention for the subscripts is not universally followed.  Many authors, particularly in the 
mathematical community, use the exact opposite convention, the first subscript to denote the direction and 
the second to denote the normal.  It turns out that both conventions are equivalent, since, as will be shown 

later, jiij    
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The traction vector shown in Figs. 3.3.7, 3.3.8, represents the force (per unit area) exerted 
by the material above the surface on the material below the surface.  By Newton’s third 
law, an equal and opposite traction must be exerted by the material below the surface on 
the material above the surface, as shown in Fig. 3.3.9 (thick dotted line).  If )(kt  has stress 
components , ,zx zy zz   , then so should )( kt  : ( ) ( )( ) ( ) ( )zx zy zz          k kt i j k t . 

 

 
 

Figure 3.3.9: equal and opposite traction vectors – each with the same stress 
components 

 
 
Sign Convention for Stress Components 
 
The following convention is used: 

 
The stress is positive when the direction of the normal and the direction of 

the stress component are both positive or both negative 
The stress is negative when one of the directions is positive and the other is 

negative 
 
According to this convention, the three stresses in Figs. 3.3.7-9 are all positive. 
 
Looking at the two-dimensional case for ease of visualisation, the (positive and negative) 
normal stresses and shear stresses on either side of a surface are as shown in Fig. 3.3.10. 
To clarify this, consider the yy  stress in Fig. 3.310a: “above” the plane, the normal to 

the plane is in the positive y direction (up) and the component yy  acts in the positive 

direction (up), so this stress is positive; “below” the plane, the normal to the plane is in 
the negative y direction (down) and the component yy  acts in the negative direction 

(down), so this stress is positive. The simple consequence of this sign convention is that 
normal stresses which “pull” (tension) are positive and normal stresses which “push” 
(compression) are negative.  Note that the shear stresses always go in opposite directions. 
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Figure 3.3.10: stresses acting on either side of a material surface: (a) positive 
stresses, (b) negative stresses 

 
 
Examples of negative stresses are shown in Fig. 3.3.11 {▲Problem 4}. 
 

 
 

Figure 3.3.11: examples of negative stress components 
 
 
3.3.2 Real Problems and Saint-Venant’s Principle 
 
Some examples have been given earlier of external forces acting on materials.  In reality, 
an external force will be applied to a real material component in a complex way.  For 
example, suppose that a block of material, welded to a large object at one end, is pulled at 
its other end by a rope attached to a metal hoop, which is itself attached to the block by a 
number of bolts, Fig. 3.3.12a.  The block can be idealised as in Fig 3.3.12b; here, the 
precise details of the region in which the external force is applied are neglected. 
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Figure 3.3.12: a block subjected to an external force: (a) real case, (b) ideal model, 
(c) stress in ideal model, (d) stress in actual material, (e) the stress in the real 
material, away from the right hand end, is modelled well by either (f) or (g) 

 
According to the earlier discussion, the stress in the ideal model is as in Fig. 3.3.12c.  One 
will find that, in the real material, the stress is indeed (approximately) as predicted, but 
only at an appreciable distance from the right hand end.  Near where the rope is attached, 
the force will differ considerably, as sketched in Fig.3.3.12d. 
 
Thus the ideal models of the type discussed in this section, and in much of this book, are 
useful only in predicting the stress field in real components in regions away from points 
of application of loads.  This does not present too much of a problem, since the stresses 
internal to a structure in such regions are often of most interest.  If one wants to know 
what happens near the bolted connection, then one will have to create a complex model 
incorporating all the details and the problem will be more difficult to solve. 
 
That said, it is an experimental fact that if two different force systems are applied to a 
material, but they are equivalent force systems, as in Fig. 3.3.12(f,g), then the stress fields 
in regions away from where the loads are applied will be the same.  This is known as 
Saint-Venant’s Principle.  Typically, one needs to move a distance away from where the 
loads are applied roughly equal to the distance over which the loads are applied. 
 
Saint-Venant’s principle is extremely important in practical applications: we can replace a 
complicated problem by a simple model problem; the solution to this latter problem will 
often give us the information we require. 
 
 
3.3.3 Problems 
 
1. Derive Eqns. 3.3.1. 
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2. The four sides of a square block are subjected to equal forces S, as illustrated.  The 
length of each side is l and the block has unit depth (into the page).  What normal and 
shear stresses act along the (dotted) diagonal? [Hint: draw a free body diagram of the 
upper left hand triangle.] 

 
3. A shaft is concreted firmly into the ground.  A thick steel rope is looped around the 

shaft and a force is applied normal to the shaft, as shown.  The shaft is in static 
equilibrium.  Draw a free body diagram of the shaft (from the top down to ground 
level) showing the forces/moments acting on the shaft (including the reaction forces at 
the ground-level; ignore the weight of the shaft).  Draw a free body diagram of the 
section of shaft from the top down to the cross section at A.  Draw a free body 
diagram of the section of shaft from the top to the cross section at B.  Roughly sketch 
the stresses acting over the (horizontal) internal surfaces of the shaft at A and B. 

 

 
4. In Fig. 3.3.11, which of the stress components is/are negative? 

 
5. Label the following stress component acting on an internal material surface.  Is it a 

positive or negative stress? 
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6. Label the following shear stresses.  Are they positive or negative? 
 

 
 
7. Label the following normal stresses.  Are they positive or negative? 
 

 
 
8. By the definition of the traction vector t which acts on the x z  plane, 

( )
yx yy yz    jt i j k .  Sketch these three stress components on the figure below. 
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