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2 Statics of Rigid Bodies 
 
 
Statics is the study of materials at rest.  The actions of all external forces acting on such 
materials are exactly counterbalanced and there is a zero net force effect on the material: 
such materials are said to be in a state of static equilibrium.  
 
In much of this book (Chapters 6-8), static elasticity will be examined.  This is the study 
of materials which, when loaded by external forces, deform by a small amount from some 
initial configuration, and which then take up the state of static equilibrium.  An example 
might be that of floor boards deforming to take the weight of furniture.  In this chapter, as 
an introduction to this subject, rigid bodies are considered.  These are ideal materials 
which do not deform at all. 
 
The chapter begins with the fundamental concepts and principles of mechanics – 
Newton’s laws of motion.  Then the mechanics of the particle, that is, of a very small 
amount of matter which is assumed to occupy a single point in space, is examined.  
Finally, an analysis is made of the mechanics of the rigid body. 
 
The material in this chapter covers the essential material from a typical introductory 
course on statics. Although the concepts presented in this chapter serve mainly as an 
introduction for the later chapters, the ideas are very useful and important in themselves, 
for example in the design of machinery and in structural engineering. 
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2.1 The Fundamental Concepts and Principles of 
Mechanics 

 
 
2.1.1 The Fundamental Concepts 
 
The four fundamental concepts used in mechanics are space, time, mass and force1.  It is 
not easy to define what these concepts are.  Rather, one “knows” what they are, and they 
take on precise meaning when they appear in the principles and equations of mechanics 
discussed further below. 
 
The concept of space is associated with the idea of the position of a point, which is 
described using coordinates ),,( zyx  relative to an origin o as illustrated in Fig. 2.1.1. 
 

 
 

Figure 2.1.1:  a particle in space 
 
The time at which events occur must be recorded if a material is in motion.  The concept 
of mass enters Newton’s laws (see below) and in that way is used to characterize the 
relationship between the acceleration of a body and the forces acting on that body.  
Finally, a force is something that causes matter to accelerate; it represents the action of 
one body on another. 
 
 
2.1.2 The Fundamental Principles 
 
The fundamental laws of mechanics are Newton’s three laws of motion.  These are: 
 
Newton’s First Law: 
if the resultant force acting on a particle is zero, the particle remains at rest (if originally 
at rest) or will move with constant speed in a straight line (if originally in motion) 
 
By resultant force, one means the sum of the individual forces which act; the resultant is 
obtained by drawing the individual forces end-to-end, in what is known as the vector 

                                                 
1 or at least the only ones needed outside more “advanced topics” 
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polygon law; this is illustrated in Fig. 2.1.2, in which three forces 321 ,, FFF  act on a 

single particle, leading to a non-zero resultant force2 F. 
 

 
 

Figure 2.1.2: the resultant of a system of forces acting on a particle; (a) 
three forces acting on a particle, (b) construction of the resultant F, (c) 
an alternative construction, showing that the order in which the forces 
are drawn is immaterial, (d) the resultant force acting on the particle 

 
 
Example (illustrating Newton’s First Law) 
 
In Fig. 2.1.3 is shown a floating boat.  It can be assumed that there are two forces acting 
on the boat.  The first is the boat’s weight gF .  There is also an upward buoyancy force 

bF  exerted by the water on the boat.  If these two forces are equal and opposite, the 

resultant of these two forces will be zero, and therefore the boat will remain at rest (it will 
not move up or down).  
 

 
 

Figure 2.1.3: a zero resultant force acting on a boat 
 

■ 
  

The resultant force acting on the particle of Fig. 2.1.2 is non-zero, and in that case one 
applies Newton’s second law: 
 
 
 
 
                                                 
2 the construction of the resultant force can be regarded also as a principle of mechanics, in that it is not 
proved or derived, but is taken as “given”  and is borne out by experiment 
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Newton’s Second Law: 
if the resultant force acting on a particle is not zero, the particle will have an acceleration 
proportional to the magnitude of the resultant force and in the direction of this resultant 
force: 
 

aF m             (2.1.1) 
 

where3 F is the resultant force, a is the acceleration and m is the mass of the particle.  The 
units of the force are the Newton (N), the units of acceleration are metres per second 
squared (m/s2), and those of mass are the kilogram (kg); a force of 1 N gives a mass of 1 
kg an acceleration of 1 m/s2. 
 
If the water were removed from beneath the boat of Fig. 2.1.3, a non-zero resultant force 
would act, and the boat would accelerate downward4. 
 
Newton’s Third Law: 
each force (of “action”) has an equal and opposite force (of “reaction”) 
 
Again, considering the boat of Fig. 2.1.3, the water exerts an upward buoyancy force on 
the boat, and the boat exerts an equal and opposite force on the water.  This is illustrated 
in Fig. 2.1.4. 
 

 
Figure 2.1.4: Newton’s third law; (a) the water exerts a force on the 

boat, (b) the boat exerts an equal and opposite force on the water 
 
Newton’s laws are used in the analysis of the most basic problems and in the analysis of 
the most advanced, complex, problems.  They appear in many guises and sometimes they 
appear hidden, but they are always there in a Mechanics problem. 

                                                 
3 vector quantities, that is, quantities which have both a magnitude and a direction associated with them, are 
represented by bold letters, like F here; scalars are represented by italics, like m here.  The magnitude and 
direction of vectors are illustrated using arrows as in Fig. 2.1.2 
4 if we set F to be zero in Newton’s Second Law, we get 0a , which seems to be saying the same thing as 
Newton’s First Law, and in fact it appears to imply that Newton’s First Law is redundant. For this reason, 
Newton’s First Law is not actually used in analyzing problems (much); it is necessary only to deal with 
different frames of reference. For example, if you stand in an accelerating lift (your frame of reference) with 
glass walls, it appears to you that you are stationary and it is the “outside” (a different reference frame) 
which is accelerating, even though there is no “force” acting on the “outside”, which appears to be a 
contradiction of Newton’s Second Law.  Newton’s First Law discounts this option: it says that when the 
force is zero, the body remains at rest or at uniform velocity. Newton’s First Law  implies that Newton’s 
Laws only apply to Inertial Frames, i.e. frames of reference in which a body remains at rest or uniform 
velocity unless acted upon by a force 

bF

bF

(a) (b)
surface of water 
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2.2 The Statics of Particles 
 
 
2.2.1 Equilibrium of a Particle 
 
The statics of particles is the study of particles at rest under the action of forces.  This 
situation is referred to as equilibrium, which is defined as follows: 
 
Equilibrium of a Particle 
A particle is in equilibrium when the resultant of all the forces acting on that particle is 
zero 
 
In practical problems, one will want to introduce a coordinate system to describe the 
action of forces on a particle.  It is important to note that a force exists independently of 
any coordinate system one might use to describe it.  For example, consider the force F in 
Fig. 2.2.1.  Using the vector polygon law, this force can be decomposed into 
combinations of any number of different individual forces; these individual forces are 
referred to as components of F.  In particular, shown in Fig 2.2.1 are three cases in which 
F is decomposed into two rectangular (perpendicular) components, the components of F 
in “direction x” and in “direction y”, xF  and yF . 

 

 
 

Figure 2.2.1: A force F decomposed into components Fx and Fy 
using three different coordinate systems 

 
By resolving forces into rectangular components, one can obtain analytic solutions to 
problems, rather than relying on graphical solutions to problems, for example as done in 
Fig. 2.1.2.  In order that the resultant force F on a body be zero, one must have that the 
resultant force in the x and y directions are zero individually1, as illustrated in the 
following example. 
 
 
 
 

                                                 
1 and in the z direction if one is considering a three dimensional problem 
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Example 
 
Consider the particle in Fig. 2.2.2, subjected to forces 321 ,, FFF .  The particle is in 

equilibrium and so by Newton’s Laws the resultant force is zero, 0F  .  The forces are 
decomposed into horizontal and vertical components xxx 321 ,, FFF  and yyy 321 ,, FFF .  The 

horizontal forces may be added together to get a single horizontal force xF , which must 

equal zero.  This force xF  should be evaluated using the vector polygon law but, since the 

individual forces xxx 321 ,, FFF  all lie along the same line, one need only add together the 

magnitudes of these vectors, which involves simply an addition of scalars:  
0321  xxx FFF .  Similarly, one has 0321  yyy FFF .  These equations could be 

used to evaluate, for example, the force 1F , if only 2F  and 3F  were known. 

 

`  
 

Figure 2.2.2: Calculating the resultant of three forces by 
decomposing them into horizontal and vertical components 

 
■ 

  
In general then, if a set of forces nFFF ,,, 21   act on a particle, the particle is in 

equilibrium if and only if 
 

 
0,0,0   zyx FFF    Equations of Equilibrium (particle)   (2.2.1) 

 
 
These are known as the equations of equilibrium for a particle.  They are three 
equations and so can be used to solve problems involving three “unknowns”, for example 
the three components of one of the forces.  In two-dimensional problems (as in the next 
example), they are a set of two equations. 
 
Example 
 
Consider the system of two cables attached to a wall shown in Fig. 2.2.3a.  The cables 
meet at C, and this point is subjected to the two forces shown.  Assume now that there are 
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forces arising in the cables AC and BC, indicated by the arrows in Fig. 2.2.3b2. One can 
now draw a free body diagram of the particle C. The free body diagram concept is 
incredibly important and it is used in the most simple and in the most complex of 
problems, and will be used again and again in what follows. A free body diagram isolates 
a body (in this case the particle C) from its surroundings, and one considers all the forces, 
and only those forces, acting on that body, as shown in Fig 2.2.3b. 
 

 
 

Figure 2.2.3: Calculating the tension in cables; (a) the cable system, 
(b) a free-body diagram of particle C, (c) cable AC in equilibrium 

 
The equations of equilibrium for particle C are 
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leading to N9.36,N2.46 BCAC  FF . 

 
The results are positive numbers; if the answer was negative, the arrow we assumed to be 
going towards C would in fact have been going the other way, away from C. We guessed 
right. 
 
The cable exerts a tension/pulling force on particle C and so, from Newton’s third law, C 
must exert an equal and opposite force on the cable, as illustrated in Fig. 2.2.3c. 

■ 
 
 
2.2.2 Rough and Smooth Surfaces 
 
Fig 2.2.4a shows a particle in equilibrium, sitting on a rough surface and subjected to a 
force F.  Such a surface is one where frictional forces are large enough to prevent 
tangential motion.  The free body diagram of the particle is shown in Fig. 2.2.4b.  The 
friction reaction force is fR  (preventing movement along the surface) and the normal 

                                                 
2 it does not matter which way you draw the arrows (away from C or towards C); if you do the calculation 
correctly, you will still get the same, correct, answer 
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reaction force is N  (preventing movement through the surface) and these lead to the 
resultant reaction force R which, by Newton’s Laws, must balance F. 
 
When a particle meets a smooth surface, there is no resistance to tangential movement.  
The particle is subjected to only a normal reaction force, and thus a particle in equilibrium 
can only sustain a purely normal force.  This is illustrated in Fig. 2.2.4c. 
 

 
 

Figure 2.2.4: a particle sitting on a surface; (a) a rough surface, (b) 
a free-body diagram of the particle in (a), (c) a smooth surface 

 
 
2.2.3 Problems 
 
1. A 3000kg crate is being unloaded from a ship.  A rope BC is pulled to position the 

crate correctly on the wharf.  Use the Equations of Equilibrium to evaluate the 
tensions in the crane-cable AB and rope.  [Hint: create a free body for particle B.] 

 

 
 
2. A metal ring sits over a stationary post, as shown in the plan view below.  Two forces 

act on the ring, in opposite directions.  Draw a free body diagram of the ring including 
the reaction force of the post on the ring.  Evaluate this reaction force.  Draw a free 
body diagram of the post and show also the forces acting on it. 

 

 
 
3. Two cylindrical barrels of radius 500mm  are placed inside a container, a cross 

section of which is shown below.  The mass of each barrel is 10kg.  All surfaces are 

 o15

o10
A

B

C

cable 

rope 

50 NN200

F F F

fR

N R

(a) (b) (c)



Section 2.2 

Solid Mechanics Part I                                                                                Kelly 18

smooth.  Draw free body diagrams of each barrel, including the reaction forces 
exerted by the container walls on the barrels, the weight of each barrel, which can be 
assumed to act through the barrel centres, and the reaction forces of barrel on barrel.  
Apply the Equations of Equilibrium to each barrel.  Evaluate all forces.  What forces 
act on the container walls? 

 
1.5m
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2.3 The Statics of Rigid Bodies 
 
A material body can be considered to consist of a very large number of particles.  A rigid 
body is one which does not deform, in other words the distance between the individual 
particles making up the rigid body remains unchanged under the action of external forces.   
 
A new aspect of mechanics to be considered here is that a rigid body under the action of a 
force has a tendency to rotate about some axis.  Thus, in order that a body be at rest, one 
not only needs to ensure that the resultant force is zero, but one must now also ensure that 
the forces acting on a body do not tend to make it rotate.  This issue is addressed in what 
follows. 
 
 
2.3.1 Moments, Couples and Equivalent Forces 
 
When you swing a door on its hinges, it will move more easily if (i) you push hard, i.e. if 
the force is large, and (ii) if you push furthest from the hinges, near the edge of the door.  
It makes sense therefore to measure the rotational effect of a force on an object as 
follows: 
 
The tendency of a force to make a rigid body rotate is measured by the moment of that 
force about an axis.  The moment of a force F about an axis through a point o is defined 
as the product of the magnitude of F times the perpendicular distance d from the line of 
action of F and the axis o.  This is illustrated in Fig. 2.3.1. 
 

 
 

Figure 2.3.1: The moment of a force F about an axis o (the axis goes 
“into” the page) 

 
The moment oM  of a force F can be written as 

 
FdM 0      (2.3.1) 

 
Not only must the axis be specified (by the subscript o) when evaluating a moment, but 
the sense of that moment must be given; the convention that a tendency to rotate 
counterclockwise is taken to be a positive moment will be used here.  Thus the moment in 
Fig. 2.3.1 is positive.  The units of moment are the Newton metre (Nm). 
 
Note that when the line of action of a force goes through the axis, the moment is zero. 
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It should be emphasized that there is not actually a physical axis, such as a rod, at the 
point o of Fig. 2.3.1; in this discussion, it is imagined that an axis is there. 
 
Two forces of equal magnitude and acting along the same line of action have not only the 
same components yx FF , , but have equal moments about any axis.  They are called 

equivalent forces since they have the same effect on a rigid body.  This is illustrated in 
Fig. 2.3.2. 
 

 
 

Figure 2.3.2: Two equivalent forces 
 
Consider next the case of two forces of equal magnitude, parallel lines of action separated 
by distance d, and opposite sense.  Any two such forces are said to form a couple.  The 
only motion that a couple can impart is a rotation; unlike the forces of Fig. 2.3.2, the 
couple has no tendency to translate a rigid body.  The moment of the couple of Fig. 2.3.3 
about o is 
 

FdFdFdM  12o           (2.3.2) 

 

 
 

Figure 2.3.3: A couple 
 
As with the moment, the sign convention which will be followed in what follows is that a 
couple is positive when it acts in a counterclockwise sense, as in Fig. 2.3.3. 
 
It is straight forward to show the following three important properties of couples: 
(a) the moment of Fig. 2.3.3 is also Fd  about any axis in the rigid body, and so can be 

represented by M, without the subscript.  In other words, this moment of the couple is 
independent of the choice of axis. {see ▲Problem 1} 

(b) any two different couples having the same moment M are equivalent, in the sense that 
they tend to rotate the body in precisely the same way; it does not matter that the 
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forces forming these couples might have different magnitudes, act in different 
directions and have different distances between them. 

(c) any two couples may be replaced by a single couple of moment equal to the algebraic 
sum of the moments of the individual couples. 

 
Example 
 
Consider the two couples shown in Fig. 2.3.4a.  These couples can conveniently be 
represented schematically by semi-circular arrows, as shown in Fig. 2.3.4b.  They can 
also be denoted by the letter M, the magnitude of their moment, since the magnitude of 
the forces and their separation is unimportant, only their product.  In this example, if the 
body is in static equilibrium, the couples must be equal and opposite, 12 MM  , i.e. the 
sum of the moments is zero and the net effect is to impart zero rotation on the body. 
 
Note that the curved arrow for 2M  has been drawn counterclockwise, even though it is 
negative.  It could have been illustrated as in Fig. 2.3.4c, but the version of 2.3.4b is 
preferable as it is more consistent and reduces the likelihood of making errors when 
solving problems (see later).  In other words, if your sign convention is counterclockwise 
positive, draw everything counterclockwise; if your sign convention is clockwise positive, 
draw everything clockwise. 
 

 
 

Figure 2.3.4: Two couples acting on a rigid body 
 

■ 
 
A final point to be made regarding couples is the following: any force is equivalent to (i) 
a force acting at any (other) point and (ii) a couple.  This is illustrated in Fig. 2.3.5. 
 
Referring to Fig. 2.3.5, a force F acts at position A.  This force tends to translate the rigid 
body along its line of action and also to rotate it about any chosen axis.  The system of 
forces in Fig. 2.3.5b are equivalent to those in Fig. 2.3.5a: a set of equal and opposite 
forces have simply been added at position B.  Now the force at A and one of the forces at 
B form a couple, of moment M say.  As in the previous example, the couple can 
conveniently be represented by a curved arrow, and the letter M.  For illustrative 
purposes, the curved arrow is usually grouped with the force F at B, as shown in Fig. 
2.3.5c.  However, note that the curved arrow representing the moment of a couple, which 
can be placed anywhere and have the same effect, is not associated with any particular 
point in the rigid body. 
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Figure 2.3.5: Equivalents force/moment systems; (a) a force F, (b) 
an equivalent system to (a), (c) an equivalent system involving a 

force and a couple M 
 
Note that if the force at A was moved to a position other than B, the moment M of Fig. 
2.3.5c would be different. 
 
Example 
 
Consider the spanner and bolt system shown in Fig. 2.3.6.  A downward force of 200N is 
applied at the point shown.  This force can be replaced by a force acting somewhere else, 
together with a moment.  For the case of the force moved to the bolt-centre, the moment 
has the magnitude shown in Fig. 2.3.6b. 
 

 
 

Figure 2.3.6: Equivalent force and force/moment acting on a 
spanner and bolt system 

 
As mentioned, it is best to maintain consistency and draw the semi-circle representing the 
moment counterclockwise (positive) and given a value of 40  as in Fig. 2.3.6b; rather 
than as in Fig. 2.3.6c. 

■ 
 
Example 
 
Consider the plate subjected to the four external loads shown in Fig. 2.3.7a.  An 
equivalent force-couple system F-M, with the force acting at the centre of the plate, can 
be calculated through 
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o

200 N, 100 N

M (100)(100) (50 / 2)(100) (50 / 2)(100) (200)(50) 7071.07 Nmm

x yF F 

      

 


 

 
and is shown in Fig. 2.3.7b.  A resultant force R can also be derived, that is, an 
equivalent force positioned so that a couple is not necessary, as shown in Fig. 2.3.7.c.   
 

 
 

Figure 2.3.7: Forces acting on a plate; (a) individual forces, (b) an 
equivalent force-couple system at the plate-centre, (c) the resultant 

force 
 
The force systems in the three figures are equivalent in the sense that they tend to impart 
(a) the same translation in the x direction, (b) the same translation in the y direction, and 
(c) the same rotation about any given point in the plate.  For example, the moment about 
the upper left corner is 
 

 Fig 2.3.7a: (100)(0) (50 / 2)(50) (50 / 2)(150) (200)(100)     
 Fig 2.3.7b: 7071)44.89)(61.223(   
 Fig 2.3.7c: )82.57)(61.223(  
 
all leading to Nmm93.12928M about that point. 

■ 
 
 
2.3.2 Equilibrium of Rigid Bodies 
 
The concept of equilibrium encountered earlier in the context of particles can now be 
generalized to the case of the rigid body: 
 
Equilibrium of a Rigid Body 
A rigid body is in equilibrium when the external forces acting on it form a system of 
forces equivalent to zero 
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The necessary and sufficient conditions that a (two dimensional) rigid body is in 
equilibrium are then 
 

 
0,0,0 o   MFF yx    Equilibrium Equations (2D Rigid Body)  (2.3.3) 

 
 
that is, there is no resultant force and no resultant moment.  Note that the yx   axes and 
the axis of rotation o can be chosen completely arbitrarily: if the resultant force is zero, 
and the resultant moment about one axis is zero, then the resultant moment about any 
other axis in the body will be zero also. 
 
 
2.3.3 Joints and Connections 
 
Components in machinery, buildings etc., connect with each other and are supported in a 
number of different ways.  In order to solve for the forces acting in such assemblies, one 
must be able to analyse the forces acting at such connections/supports. 
 
One of the most commonly occurring supports can be idealised as a roller support, Fig. 
2.3.8a.  Here, the contacting surfaces are smooth and the roller offers only a normal 
reaction force (see §2.2.2).  This reaction force is labelled yR , according to the 

conventional yx   coordinate system shown.  This is shown in the free-body diagram of 
the component. 
 

 
 

Figure 2.3.8: Supports and connections; (a) roller support, (b) pin 
joint, (c) clamped 

 
Another commonly occurring connection is the pin joint, Fig. 2.3.8b.  Here, the 
component is connected to a fixed hinge by a pin (going “into the page”).  The 
component is thus constrained to move in one plane, and the joint does not provide 
resistance to this turning movement.  The underlying support transmits a reaction force 
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through the hinge pin to the component, which can have both normal ( yR ) and tangential 

( xR ) components. 

 
Finally, in Fig. 2.3.8c is shown a fixed (clamped) joint.  Here the component is welded 
or glued and cannot move at the base.  It is said to be cantilevered.  The support in this 
case reacts with normal and tangential forces, but also with a couple of moment M, which 
resists any bending/turning at the base. 
 
Example 
 
For example, consider such a component loaded with a force F a distance L from the 
base, as shown in Fig. 2.3.9a.  A free-body diagram of the component is shown in Fig. 
2.3.9b.  The known force F acts on the body and so do two unknown forces xR , yR , and 

a couple of moment M.  The unknown forces and moment will be called reactions 
henceforth.  If the component is static, the equilibrium equations 2.3.3 apply; one has, 
taking moments about the base of the component, 
 

0,0,0 o   MFLMRFRFF yyxx  

 
and so 
 

FLMRFR yx  ,0,  

 
The moment is positive and so acts in the direction shown in the Figure. 
 

 
 

Figure 2.3.9: A loaded cantilevered component; (a) loaded 
component, (b) free body diagram of the component 

 
The reaction moment of Fig. 2.3.9b can be experienced as follows: take a ruler and hold it 
firmly at one end, upright in your right hand. Simulate the applied force now by pushing 
against the ruler with a finger of your left hand.  You will feel that, to maintain the ruler 
“vertical” at the base, you need to apply a twist with your right hand, in the direction of 
the moment shown in Fig. 2.3.9b. 
 
Note that, when solving this problem, moments were taken about the base.  As mentioned 
already, one can take the moment about any point in the column.  For example, taking the 
moment about the point where the force F is applied, one has 
 

(b)

xR

yR

M
(a)

F

L

F

L

o



Section 2.3 

Solid Mechanics Part I                                                                                Kelly 26

F 0xM R L M    

 
This of course leads to the same result as before, but the final calculation of the forces is 
now slightly more complicated; in general, it is easier if the axis is chosen to coincide 
with the point where the reaction forces act – this is because the reaction forces do not 
then appear in the moment equation: o 0M FL M    . 

■ 
 
For ease of discussion, from now on, “couples” such as that encountered in Fig. 2.3.9 will 
simply be called “moments”. 
 
All the elements are now in place to tackle fairly complex static rigid body problems. 
 
Example 
 
Consider the plate subjected to the three external loads shown in Fig. 2.3.10a.  The plate 
is supported by a roller at A and a pin-joint at B.  The weight of the plate is assumed to be 
small relative to the applied loads and is neglected.  A free body diagram of the plate is 
shown in Fig 2.3.10b.  This shows all the forces acting on the plate.  Reactions act at A 
and B: these forces represent the action of the base on the plate, preventing it from 
moving downward and horizontally.  The equilibrium equations can be used to find the 
reactions: 
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0 0
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       

 



 , 

 

 
 

Figure 2.3.10: Equilibrium of a plate; (a) forces acting on the plate, 
(b) free-body diagram of the plate 

 
The resultant moment was calculated by taking the moment about point A.  As mentioned 
in relation to the previous example, one could have taken the moment about any other 
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point in the plate.  The “most convenient” point about which to take moments in this 
example would be point A or B, since in that case only one of the reaction forces will 
appear in the moment equilibrium equation. 

■ 
 
In the above example there were three unknown reactions and three equilibrium equations 
with which to find them.  If the roller was replaced with a pin, there would be four 
unknown reactions, and now there would not be enough equations with which to find the 
reactions.  When this situation arises, the system is called statically indeterminate.  To 
find the unknown reactions, one must relax the assumption of rigidity, and take into 
account the fact that all materials deform.  By calculating deformations within the plate, 
the reactions can be evaluated.  The deformation of materials is studied in the following 
chapters. 
 
To end this Chapter, note the following: 
(i) the equilibrium equations 2.3.3 result from Newton’s laws, and are thus as valid for 

a body of water as they are for a body of hard steel; the external forces acting on a 
body of still water form a system of forces equivalent to zero. 

(ii) as mentioned already, Newton’s laws apply not only to a complete body or 
structure, but to any portion of a body.  The external forces acting on any free-body 
portion of static material form a system of forces equivalent to zero. 

(iii) there is no such thing as a rigid body.  Metals and other engineering materials can 
be considered to be “nearly rigid” as they do not deform by much under even fairly 
large loads.  The analysis carried out in this Chapter is particularly relevant to these 
materials and in answering questions like: what forces act in the steel members of a 
suspension bridge under the load of self-weight and traffic? (which is just a more 
complicated version of the problem of Fig. 2.2.3 or Problem 3 below). 

(iv) if the loads on the plate of Fig. 2.3.10a are too large, the plate will “break”.  The 
analysis carried out in this Chapter cannot answer where it will break or when it will 
break.  The more sophisticated analysis carried out in the following Chapters is 
necessary to deal with this and many other questions of material response.  

 
 
2.3.4 Problems 
 
1. A plate is subjected to a couple Fd , with cm20d , as shown below left.  Verify 

that the couple can be moved to the position shown below right, and the effect on the 
plate is the same, by showing that the moment about point o in both cases is 

20M F  . 
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2. What force F must be applied to the following static component such that the tension 

in the cable, T, is 1kN?  What are the reactions at the pin support C? 
 

 
 
3. A machine part is hinged at A and subjected to two forces through cables as shown.  

What couple M needs to be applied to the machine part for equilibrium to be 
maintained?  Where can this couple be applied? 
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