2 Statics of Rigid Bodies

Statics is the study of materials at rest. The actions of all external forces acting on such materials are exactly counterbalanced and there is a zero net force effect on the material: such materials are said to be in a state of static equilibrium.

In much of this book (Chapters 6-8), static elasticity will be examined. This is the study of materials which, when loaded by external forces, deform by a small amount from some initial configuration, and which then take up the state of static equilibrium. An example might be that of floor boards deforming to take the weight of furniture. In this chapter, as an introduction to this subject, rigid bodies are considered. These are ideal materials which do not deform at all.

The chapter begins with the fundamental concepts and principles of mechanics Newton's laws of motion. Then the mechanics of the particle, that is, of a very small amount of matter which is assumed to occupy a single point in space, is examined. Finally, an analysis is made of the mechanics of the rigid body.

The material in this chapter covers the essential material from a typical introductory course on statics. Although the concepts presented in this chapter serve mainly as an introduction for the later chapters, the ideas are very useful and important in themselves, for example in the design of machinery and in structural engineering.

2.1 The Fundamental Concepts and Principles of Mechanics

2.1.1 The Fundamental Concepts

The four fundamental concepts used in mechanics are space, time, mass and force ${ }^{1}$. It is not easy to define what these concepts are. Rather, one "knows" what they are, and they take on precise meaning when they appear in the principles and equations of mechanics discussed further below.

The concept of space is associated with the idea of the position of a point, which is described using coordinates (x, y, z) relative to an origin o as illustrated in Fig. 2.1.1.

Figure 2.1.1: a particle in space
The time at which events occur must be recorded if a material is in motion. The concept of mass enters Newton's laws (see below) and in that way is used to characterize the relationship between the acceleration of a body and the forces acting on that body. Finally, a force is something that causes matter to accelerate; it represents the action of one body on another.

2.1.2 The Fundamental Principles

The fundamental laws of mechanics are Newton's three laws of motion. These are:

Newton's First Law:

if the resultant force acting on a particle is zero, the particle remains at rest (if originally at rest) or will move with constant speed in a straight line (if originally in motion)

By resultant force, one means the sum of the individual forces which act; the resultant is obtained by drawing the individual forces end-to-end, in what is known as the vector

[^0]polygon law; this is illustrated in Fig. 2.1.2, in which three forces $\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}$ act on a single particle, leading to a non-zero resultant force ${ }^{2} \mathbf{F}$.

(a)

(b)

(c)
F
(d)

Figure 2.1.2: the resultant of a system of forces acting on a particle; (a) three forces acting on a particle, (b) construction of the resultant F, (c) an alternative construction, showing that the order in which the forces are drawn is immaterial, (d) the resultant force acting on the particle

Example (illustrating Newton's First Law)

In Fig. 2.1.3 is shown a floating boat. It can be assumed that there are two forces acting on the boat. The first is the boat's weight \mathbf{F}_{g}. There is also an upward buoyancy force \mathbf{F}_{b} exerted by the water on the boat. If these two forces are equal and opposite, the resultant of these two forces will be zero, and therefore the boat will remain at rest (it will not move up or down).

Figure 2.1.3: a zero resultant force acting on a boat

The resultant force acting on the particle of Fig. 2.1.2 is non-zero, and in that case one applies Newton's second law:

[^1]
Newton's Second Law:

if the resultant force acting on a particle is not zero, the particle will have an acceleration proportional to the magnitude of the resultant force and in the direction of this resultant force:

$$
\begin{equation*}
\mathbf{F}=m \mathbf{a} \tag{2.1.1}
\end{equation*}
$$

where ${ }^{3} \mathbf{F}$ is the resultant force, \mathbf{a} is the acceleration and m is the mass of the particle. The units of the force are the Newton (N), the units of acceleration are metres per second squared $\left(\mathrm{m} / \mathrm{s}^{2}\right)$, and those of mass are the kilogram (kg); a force of 1 N gives a mass of 1 kg an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$.

If the water were removed from beneath the boat of Fig. 2.1.3, a non-zero resultant force would act, and the boat would accelerate downward ${ }^{4}$.

Newton's Third Law:

each force (of "action") has an equal and opposite force (of "reaction")
Again, considering the boat of Fig. 2.1.3, the water exerts an upward buoyancy force on the boat, and the boat exerts an equal and opposite force on the water. This is illustrated in Fig. 2.1.4.

Figure 2.1.4: Newton's third law; (a) the water exerts a force on the boat, (b) the boat exerts an equal and opposite force on the water

Newton's laws are used in the analysis of the most basic problems and in the analysis of the most advanced, complex, problems. They appear in many guises and sometimes they appear hidden, but they are always there in a Mechanics problem.

[^2]
2.2 The Statics of Particles

2.2.1 Equilibrium of a Particle

The statics of particles is the study of particles at rest under the action of forces. This situation is referred to as equilibrium, which is defined as follows:

Equilibrium of a Particle

A particle is in equilibrium when the resultant of all the forces acting on that particle is zero

In practical problems, one will want to introduce a coordinate system to describe the action of forces on a particle. It is important to note that a force exists independently of any coordinate system one might use to describe it. For example, consider the force \mathbf{F} in Fig. 2.2.1. Using the vector polygon law, this force can be decomposed into combinations of any number of different individual forces; these individual forces are referred to as components of \mathbf{F}. In particular, shown in Fig 2.2.1 are three cases in which \mathbf{F} is decomposed into two rectangular (perpendicular) components, the components of \mathbf{F} in "direction x " and in "direction y ", \mathbf{F}_{x} and \mathbf{F}_{y}.

(a)

(b)

(c)

Figure 2.2.1: A force \mathbf{F} decomposed into components F_{x} and F_{y} using three different coordinate systems

By resolving forces into rectangular components, one can obtain analytic solutions to problems, rather than relying on graphical solutions to problems, for example as done in Fig. 2.1.2. In order that the resultant force \mathbf{F} on a body be zero, one must have that the resultant force in the x and y directions are zero individually ${ }^{1}$, as illustrated in the following example.

[^3]
Example

Consider the particle in Fig. 2.2.2, subjected to forces $\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}$. The particle is in equilibrium and so by Newton's Laws the resultant force is zero, $\mathbf{F}=\mathbf{0}$. The forces are decomposed into horizontal and vertical components $\mathbf{F}_{1 x}, \mathbf{F}_{2 x}, \mathbf{F}_{3 x}$ and $\mathbf{F}_{1 y}, \mathbf{F}_{2 y}, \mathbf{F}_{3 y}$. The horizontal forces may be added together to get a single horizontal force \mathbf{F}_{x}, which must equal zero. This force \mathbf{F}_{x} should be evaluated using the vector polygon law but, since the individual forces $\mathbf{F}_{1 x}, \mathbf{F}_{2 x}, \mathbf{F}_{3 x}$ all lie along the same line, one need only add together the magnitudes of these vectors, which involves simply an addition of scalars:
$F_{1 x}+F_{2 x}+F_{3 x}=0$. Similarly, one has $F_{1 y}+F_{2 y}+F_{3 y}=0$. These equations could be used to evaluate, for example, the force \mathbf{F}_{1}, if only \mathbf{F}_{2} and \mathbf{F}_{3} were known.

Figure 2.2.2: Calculating the resultant of three forces by decomposing them into horizontal and vertical components

In general then, if a set of forces $\mathbf{F}_{1}, \mathbf{F}_{2}, \cdots, \mathbf{F}_{n}$ act on a particle, the particle is in equilibrium if and only if

$$
\sum F_{x}=0, \quad \sum F_{y}=0, \quad \sum F_{z}=0 \quad \text { Equations of Equilibrium (particle) }
$$

These are known as the equations of equilibrium for a particle. They are three equations and so can be used to solve problems involving three "unknowns", for example the three components of one of the forces. In two-dimensional problems (as in the next example), they are a set of two equations.

Example

Consider the system of two cables attached to a wall shown in Fig. 2.2.3a. The cables meet at C , and this point is subjected to the two forces shown. Assume now that there are
forces arising in the cables AC and BC , indicated by the arrows in Fig. 2.2.3b ${ }^{2}$. One can now draw a free body diagram of the particle C . The free body diagram concept is incredibly important and it is used in the most simple and in the most complex of problems, and will be used again and again in what follows. A free body diagram isolates a body (in this case the particle C) from its surroundings, and one considers all the forces, and only those forces, acting on that body, as shown in Fig 2.2.3b.

Figure 2.2.3: Calculating the tension in cables; (a) the cable system, (b) a free-body diagram of particle C, (c) cable $A C$ in equilibrium

The equations of equilibrium for particle C are

$$
\begin{aligned}
\sum F_{x} & =-F_{\mathrm{BC}}-F_{\mathrm{AC}} \cos 60+100 \cos \theta=0, \\
F_{y} & =F_{\mathrm{AC}} \cos 30+100 \sin \theta-120=0
\end{aligned}
$$

leading to $F_{\mathrm{AC}}=46.2 \mathrm{~N}, F_{\mathrm{BC}}=36.9 \mathrm{~N}$.
The results are positive numbers; if the answer was negative, the arrow we assumed to be going towards C would in fact have been going the other way, away from C . We guessed right.

The cable exerts a tension/pulling force on particle C and so, from Newton's third law, C must exert an equal and opposite force on the cable, as illustrated in Fig. 2.2.3c.

2.2.2 Rough and Smooth Surfaces

Fig 2.2.4a shows a particle in equilibrium, sitting on a rough surface and subjected to a force \mathbf{F}. Such a surface is one where frictional forces are large enough to prevent tangential motion. The free body diagram of the particle is shown in Fig. 2.2.4b. The friction reaction force is \mathbf{R}_{f} (preventing movement along the surface) and the normal

[^4]reaction force is \mathbf{N} (preventing movement through the surface) and these lead to the resultant reaction force \mathbf{R} which, by Newton's Laws, must balance \mathbf{F}.

When a particle meets a smooth surface, there is no resistance to tangential movement. The particle is subjected to only a normal reaction force, and thus a particle in equilibrium can only sustain a purely normal force. This is illustrated in Fig. 2.2.4c.

Figure 2.2.4: a particle sitting on a surface; (a) a rough surface, (b) a free-body diagram of the particle in (a), (c) a smooth surface

2.2.3 Problems

1. A 3000 kg crate is being unloaded from a ship. A rope BC is pulled to position the crate correctly on the wharf. Use the Equations of Equilibrium to evaluate the tensions in the crane-cable AB and rope. [Hint: create a free body for particle B.]

2. A metal ring sits over a stationary post, as shown in the plan view below. Two forces act on the ring, in opposite directions. Draw a free body diagram of the ring including the reaction force of the post on the ring. Evaluate this reaction force. Draw a free body diagram of the post and show also the forces acting on it.

3. Two cylindrical barrels of radius 500 mm are placed inside a container, a cross section of which is shown below. The mass of each barrel is 10 kg . All surfaces are
smooth. Draw free body diagrams of each barrel, including the reaction forces exerted by the container walls on the barrels, the weight of each barrel, which can be assumed to act through the barrel centres, and the reaction forces of barrel on barrel. Apply the Equations of Equilibrium to each barrel. Evaluate all forces. What forces act on the container walls?

2.3 The Statics of Rigid Bodies

A material body can be considered to consist of a very large number of particles. A rigid body is one which does not deform, in other words the distance between the individual particles making up the rigid body remains unchanged under the action of external forces.

A new aspect of mechanics to be considered here is that a rigid body under the action of a force has a tendency to rotate about some axis. Thus, in order that a body be at rest, one not only needs to ensure that the resultant force is zero, but one must now also ensure that the forces acting on a body do not tend to make it rotate. This issue is addressed in what follows.

2.3.1 Moments, Couples and Equivalent Forces

When you swing a door on its hinges, it will move more easily if (i) you push hard, i.e. if the force is large, and (ii) if you push furthest from the hinges, near the edge of the door. It makes sense therefore to measure the rotational effect of a force on an object as follows:

The tendency of a force to make a rigid body rotate is measured by the moment of that force about an axis. The moment of a force \mathbf{F} about an axis through a point o is defined as the product of the magnitude of \mathbf{F} times the perpendicular distance d from the line of action of \mathbf{F} and the axis o. This is illustrated in Fig. 2.3.1.

Figure 2.3.1: The moment of a force F about an axis o (the axis goes "into" the page)

The moment M_{o} of a force \mathbf{F} can be written as

$$
\begin{equation*}
M_{0}=F d \tag{2.3.1}
\end{equation*}
$$

Not only must the axis be specified (by the subscript o) when evaluating a moment, but the sense of that moment must be given; the convention that a tendency to rotate counterclockwise is taken to be a positive moment will be used here. Thus the moment in Fig. 2.3.1 is positive. The units of moment are the Newton metre (Nm).

Note that when the line of action of a force goes through the axis, the moment is zero.

It should be emphasized that there is not actually a physical axis, such as a rod, at the point o of Fig. 2.3.1; in this discussion, it is imagined that an axis is there.

Two forces of equal magnitude and acting along the same line of action have not only the same components F_{x}, F_{y}, but have equal moments about any axis. They are called equivalent forces since they have the same effect on a rigid body. This is illustrated in Fig. 2.3.2.

Figure 2.3.2: Two equivalent forces
Consider next the case of two forces of equal magnitude, parallel lines of action separated by distance d, and opposite sense. Any two such forces are said to form a couple. The only motion that a couple can impart is a rotation; unlike the forces of Fig. 2.3.2, the couple has no tendency to translate a rigid body. The moment of the couple of Fig. 2.3.3 about o is

$$
\begin{equation*}
M_{\mathrm{o}}=F d_{2}-F d_{1}=F d \tag{2.3.2}
\end{equation*}
$$

Figure 2.3.3: A couple
As with the moment, the sign convention which will be followed in what follows is that a couple is positive when it acts in a counterclockwise sense, as in Fig. 2.3.3.

It is straight forward to show the following three important properties of couples:
(a) the moment of Fig. 2.3.3 is also Fd about any axis in the rigid body, and so can be represented by M, without the subscript. In other words, this moment of the couple is independent of the choice of axis. $\{$ see $\boldsymbol{\Delta}$ Problem 1\}
(b) any two different couples having the same moment M are equivalent, in the sense that they tend to rotate the body in precisely the same way; it does not matter that the
forces forming these couples might have different magnitudes, act in different directions and have different distances between them.
(c) any two couples may be replaced by a single couple of moment equal to the algebraic sum of the moments of the individual couples.

Example

Consider the two couples shown in Fig. 2.3.4a. These couples can conveniently be represented schematically by semi-circular arrows, as shown in Fig. 2.3.4b. They can also be denoted by the letter M, the magnitude of their moment, since the magnitude of the forces and their separation is unimportant, only their product. In this example, if the body is in static equilibrium, the couples must be equal and opposite, $M_{2}=-M_{1}$, i.e. the sum of the moments is zero and the net effect is to impart zero rotation on the body.

Note that the curved arrow for M_{2} has been drawn counterclockwise, even though it is negative. It could have been illustrated as in Fig. 2.3.4c, but the version of 2.3.4b is preferable as it is more consistent and reduces the likelihood of making errors when solving problems (see later). In other words, if your sign convention is counterclockwise positive, draw everything counterclockwise; if your sign convention is clockwise positive, draw everything clockwise.

Figure 2.3.4: Two couples acting on a rigid body

A final point to be made regarding couples is the following: any force is equivalent to (i) a force acting at any (other) point and (ii) a couple. This is illustrated in Fig. 2.3.5.

Referring to Fig. 2.3.5, a force \mathbf{F} acts at position A. This force tends to translate the rigid body along its line of action and also to rotate it about any chosen axis. The system of forces in Fig. 2.3.5b are equivalent to those in Fig. 2.3.5a: a set of equal and opposite forces have simply been added at position B. Now the force at A and one of the forces at B form a couple, of moment M say. As in the previous example, the couple can conveniently be represented by a curved arrow, and the letter M. For illustrative purposes, the curved arrow is usually grouped with the force \mathbf{F} at B , as shown in Fig. 2.3 .5 c . However, note that the curved arrow representing the moment of a couple, which can be placed anywhere and have the same effect, is not associated with any particular point in the rigid body.

(b)
(a)

(c)

Figure 2.3.5: Equivalents force/moment systems; (a) a force F, (b) an equivalent system to (a), (c) an equivalent system involving a force and a couple M

Note that if the force at A was moved to a position other than B, the moment M of Fig. 2.3.5c would be different.

Example

Consider the spanner and bolt system shown in Fig. 2.3.6. A downward force of 200N is applied at the point shown. This force can be replaced by a force acting somewhere else, together with a moment. For the case of the force moved to the bolt-centre, the moment has the magnitude shown in Fig. 2.3.6b.

Figure 2.3.6: Equivalent force and force/moment acting on a spanner and bolt system

As mentioned, it is best to maintain consistency and draw the semi-circle representing the moment counterclockwise (positive) and given a value of -40 as in Fig. 2.3.6b; rather than as in Fig. 2.3.6c.

Example

Consider the plate subjected to the four external loads shown in Fig. 2.3.7a. An equivalent force-couple system $\mathbf{F}-M$, with the force acting at the centre of the plate, can be calculated through

$$
\begin{gathered}
\sum F_{x}=200 \mathrm{~N}, \quad \sum F_{y}=100 \mathrm{~N} \\
\sum \mathrm{M}_{\mathrm{o}}=-(100)(100)-(50 / \sqrt{2})(100)-(50 / \sqrt{2})(100)+(200)(50)=-7071.07 \mathrm{Nmm}
\end{gathered}
$$

and is shown in Fig. 2.3.7b. A resultant force \mathbf{R} can also be derived, that is, an equivalent force positioned so that a couple is not necessary, as shown in Fig. 2.3.7.c.

Figure 2.3.7: Forces acting on a plate; (a) individual forces, (b) an equivalent force-couple system at the plate-centre, (c) the resultant force

The force systems in the three figures are equivalent in the sense that they tend to impart (a) the same translation in the x direction, (b) the same translation in the y direction, and (c) the same rotation about any given point in the plate. For example, the moment about the upper left corner is

Fig 2.3.7a: $-(100)(0)-(50 / \sqrt{2})(50)-(50 / \sqrt{2})(150)+(200)(100)$
Fig 2.3.7b: $+(223.61)(89.44)-7071$
Fig 2.3.7c: $+(223.61)(57.82)$
all leading to $M=12928.93 \mathrm{Nmm}$ about that point.

2.3.2 Equilibrium of Rigid Bodies

The concept of equilibrium encountered earlier in the context of particles can now be generalized to the case of the rigid body:

Equilibrium of a Rigid Body

A rigid body is in equilibrium when the external forces acting on it form a system of forces equivalent to zero

The necessary and sufficient conditions that a (two dimensional) rigid body is in equilibrium are then

$$
\sum F_{x}=0, \quad \sum F_{y}=0, \quad \sum M_{o}=0 \quad \text { Equilibrium Equations (2D Rigid Body) }
$$

that is, there is no resultant force and no resultant moment. Note that the $x-y$ axes and the axis of rotation o can be chosen completely arbitrarily: if the resultant force is zero, and the resultant moment about one axis is zero, then the resultant moment about any other axis in the body will be zero also.

2.3.3 Joints and Connections

Components in machinery, buildings etc., connect with each other and are supported in a number of different ways. In order to solve for the forces acting in such assemblies, one must be able to analyse the forces acting at such connections/supports.

One of the most commonly occurring supports can be idealised as a roller support, Fig. 2.3.8a. Here, the contacting surfaces are smooth and the roller offers only a normal reaction force (see §2.2.2). This reaction force is labelled \mathbf{R}_{y}, according to the conventional $x-y$ coordinate system shown. This is shown in the free-body diagram of the component.

Figure 2.3.8: Supports and connections; (a) roller support, (b) pin joint, (c) clamped

Another commonly occurring connection is the pin joint, Fig. 2.3.8b. Here, the component is connected to a fixed hinge by a pin (going "into the page"). The component is thus constrained to move in one plane, and the joint does not provide resistance to this turning movement. The underlying support transmits a reaction force
through the hinge pin to the component, which can have both normal $\left(\mathbf{R}_{y}\right)$ and tangential (\mathbf{R}_{x}) components.

Finally, in Fig. 2.3.8c is shown a fixed (clamped) joint. Here the component is welded or glued and cannot move at the base. It is said to be cantilevered. The support in this case reacts with normal and tangential forces, but also with a couple of moment M, which resists any bending/turning at the base.

Example

For example, consider such a component loaded with a force \mathbf{F} a distance L from the base, as shown in Fig. 2.3.9a. A free-body diagram of the component is shown in Fig. 2.3.9b. The known force \mathbf{F} acts on the body and so do two unknown forces $\mathbf{R}_{x}, \mathbf{R}_{y}$, and a couple of moment M. The unknown forces and moment will be called reactions henceforth. If the component is static, the equilibrium equations 2.3.3 apply; one has, taking moments about the base of the component,

$$
\sum F_{x}=F+R_{x}=0, \quad \sum F_{y}=R_{y}=0, \quad \sum M_{o}=-F L+M=0
$$

and so

$$
R_{x}=-F, \quad R_{y}=0, \quad M=F L
$$

The moment is positive and so acts in the direction shown in the Figure.

Figure 2.3.9: A loaded cantilevered component; (a) loaded component, (b) free body diagram of the component

The reaction moment of Fig. 2.3.9b can be experienced as follows: take a ruler and hold it firmly at one end, upright in your right hand. Simulate the applied force now by pushing against the ruler with a finger of your left hand. You will feel that, to maintain the ruler "vertical" at the base, you need to apply a twist with your right hand, in the direction of the moment shown in Fig. 2.3.9b.

Note that, when solving this problem, moments were taken about the base. As mentioned already, one can take the moment about any point in the column. For example, taking the moment about the point where the force \mathbf{F} is applied, one has

$$
\sum M_{\mathrm{F}}=R_{x} L+M=0
$$

This of course leads to the same result as before, but the final calculation of the forces is now slightly more complicated; in general, it is easier if the axis is chosen to coincide with the point where the reaction forces act - this is because the reaction forces do not then appear in the moment equation: $\sum M_{\mathrm{o}}=-F L+M=0$.

For ease of discussion, from now on, "couples" such as that encountered in Fig. 2.3.9 will simply be called "moments".

All the elements are now in place to tackle fairly complex static rigid body problems.

Example

Consider the plate subjected to the three external loads shown in Fig. 2.3.10a. The plate is supported by a roller at A and a pin-joint at B. The weight of the plate is assumed to be small relative to the applied loads and is neglected. A free body diagram of the plate is shown in Fig 2.3.10b. This shows all the forces acting on the plate. Reactions act at A and B: these forces represent the action of the base on the plate, preventing it from moving downward and horizontally. The equilibrium equations can be used to find the reactions:

$$
\begin{aligned}
& \sum F_{x}=F_{x B}=0 \rightarrow \quad F_{x B}=0 \\
& \sum F_{y}=+F_{y A}-150-100+50+F_{y B}=0 \rightarrow \quad F_{y A}+F_{y B}=200 \mathrm{~N} \\
& \sum M_{\mathrm{A}}=-(150)(50)-(100)(120)+(50)(200)+F_{y B}(200)=0 \rightarrow \quad F_{y B}=47.5 \mathrm{~N}, \\
& \rightarrow \mathrm{~F}_{y A}=152.5 \mathrm{~N}
\end{aligned}
$$

(a)

(b)

Figure 2.3.10: Equilibrium of a plate; (a) forces acting on the plate, (b) free-body diagram of the plate

The resultant moment was calculated by taking the moment about point A. As mentioned in relation to the previous example, one could have taken the moment about any other
point in the plate. The "most convenient" point about which to take moments in this example would be point A or B, since in that case only one of the reaction forces will appear in the moment equilibrium equation.

In the above example there were three unknown reactions and three equilibrium equations with which to find them. If the roller was replaced with a pin, there would be four unknown reactions, and now there would not be enough equations with which to find the reactions. When this situation arises, the system is called statically indeterminate. To find the unknown reactions, one must relax the assumption of rigidity, and take into account the fact that all materials deform. By calculating deformations within the plate, the reactions can be evaluated. The deformation of materials is studied in the following chapters.

To end this Chapter, note the following:
(i) the equilibrium equations 2.3.3 result from Newton's laws, and are thus as valid for a body of water as they are for a body of hard steel; the external forces acting on a body of still water form a system of forces equivalent to zero.
(ii) as mentioned already, Newton's laws apply not only to a complete body or structure, but to any portion of a body. The external forces acting on any free-body portion of static material form a system of forces equivalent to zero.
(iii) there is no such thing as a rigid body. Metals and other engineering materials can be considered to be "nearly rigid" as they do not deform by much under even fairly large loads. The analysis carried out in this Chapter is particularly relevant to these materials and in answering questions like: what forces act in the steel members of a suspension bridge under the load of self-weight and traffic? (which is just a more complicated version of the problem of Fig. 2.2.3 or Problem 3 below).
(iv) if the loads on the plate of Fig. 2.3.10a are too large, the plate will "break". The analysis carried out in this Chapter cannot answer where it will break or when it will break. The more sophisticated analysis carried out in the following Chapters is necessary to deal with this and many other questions of material response.

2.3.4 Problems

1. A plate is subjected to a couple $F d$, with $d=20 \mathrm{~cm}$, as shown below left. Verify that the couple can be moved to the position shown below right, and the effect on the plate is the same, by showing that the moment about point o in both cases is $M=-20 F$.

2. What force \mathbf{F} must be applied to the following static component such that the tension in the cable, \mathbf{T}, is 1 kN ? What are the reactions at the pin support C ?

3. A machine part is hinged at A and subjected to two forces through cables as shown. What couple M needs to be applied to the machine part for equilibrium to be maintained? Where can this couple be applied?

[^0]: ${ }^{1}$ or at least the only ones needed outside more "advanced topics"

[^1]: ${ }^{2}$ the construction of the resultant force can be regarded also as a principle of mechanics, in that it is not proved or derived, but is taken as "given" and is borne out by experiment

[^2]: ${ }^{3}$ vector quantities, that is, quantities which have both a magnitude and a direction associated with them, are represented by bold letters, like \mathbf{F} here; scalars are represented by italics, like m here. The magnitude and direction of vectors are illustrated using arrows as in Fig. 2.1.2
 ${ }^{4}$ if we set \mathbf{F} to be zero in Newton's Second Law, we get $\mathbf{a}=0$, which seems to be saying the same thing as Newton's First Law, and in fact it appears to imply that Newton's First Law is redundant. For this reason, Newton's First Law is not actually used in analyzing problems (much); it is necessary only to deal with different frames of reference. For example, if you stand in an accelerating lift (your frame of reference) with glass walls, it appears to you that you are stationary and it is the "outside" (a different reference frame) which is accelerating, even though there is no "force" acting on the "outside", which appears to be a contradiction of Newton's Second Law. Newton's First Law discounts this option: it says that when the force is zero, the body remains at rest or at uniform velocity. Newton's First Law implies that Newton's Laws only apply to Inertial Frames, i.e. frames of reference in which a body remains at rest or uniform velocity unless acted upon by a force

[^3]: ${ }^{1}$ and in the z direction if one is considering a three dimensional problem

[^4]: ${ }^{2}$ it does not matter which way you draw the arrows (away from C or towards C); if you do the calculation correctly, you will still get the same, correct, answer

